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Motivated by recent progress in using restricted Boltzmann machines as preprocessing algorithms for deep
neural network, we revisit the mean-field equations [belief-propagation and Thouless-Anderson Palmer (TAP)
equations] in the best understood of such machines, namely the Hopfield model of neural networks, and we
explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the
local polarizations of neurons. In the “retrieval phase”, where neurons polarize in the direction of one memorized
pattern, we point out a major difference between the belief propagation and TAP equations: The set of belief
propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations.
This makes the latter method much better suited for applications in the learning process of restricted Boltzmann
machines. In the case where the patterns memorized in the Hopfield model are not independent, but are correlated
through a combinatorial structure, we show that the TAP equations have to be modified. This modification can
be seen either as an alteration of the reaction term in TAP equations or, more interestingly, as the consequence of
message passing on a graphical model with several hidden layers, where the number of hidden layers depends
on the depth of the correlations in the memorized patterns. This layered structure is actually necessary when one
deals with more general restricted Boltzmann machines.
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I. INTRODUCTION

The interest in neural networks has been revived recently by
a series of practical successes using “deep neural networks” to
solve important and difficult problems in artificial intelligence,
ranging from image segmentation to speech recognition (see
Ref. [1] and references therein). The crucial learning phase
in these applications is often started by using techniques for
unsupervised learning, like restricted Boltzmann machines
(RBM) [2] or autoencoders [3], in order to obtain a first set of
synaptic weights that is then optimized in a supervised learning
process using back-propagation.

The unsupervised learning in RBMs is an important
problem. Its difficulty comes from the necessity to compute
the correlation functions of a general spin systems. The
correlation functions can be approximated by numerical
methods like Monte Carlo, but this is rather time-consuming.
Alternative methods use local estimates of the correlations
[4,5] or those that can be deduced by message-passing
algorithms based on iteration of local mean-field equations.
This last approach, which was pioneered in Refs. [6,7], has
received more attention recently [8–10], and it seems that
these sophisticated message-passing algorithms can be quite
useful in RBM learning. In recent years, message-passing has
proved successful, both for analytical studies and for algorithm
design, in several important problems of computer science,
including error correcting codes (for a review see, for instance,
Ref. [11]), constraint satisfaction problems (for a review, see,
for instance, Ref. [12]), statistical inference (for a review,
see, for instance, Ref. [13]), compressed sensing [14–18], or
learning in perceptrons [19–21].

The aim of this paper is to revisit the mean-field equations
and their use as a message-passing algorithm, in the Hopfield
model of neural networks [22]. The Hopfield model, a model
of binary neurons interacting by pairs, with synaptic weights
chosen in such a way that the neurons tend to polarize
spontaneously towards one of the memorized “patterns”, can
also be seen as a RBM. It is, in fact, one of the best-understood

models of neural networks and of RBMs, and it provides an
excellent starting point to understand the mean-field message-
passing equations and their possible use as algorithms.

The present paper addresses four issues. The first one is
the derivation of the various types of mean-field equations
in the Hopfield model, the second one is their use as an
algorithm, and the third one is an analysis of the mean-field
equations in a generalized Hopfield model where patterns
have a combinatoric type of correlation. The fourth one is
the generalization of the whole approach to RBMs which are
of a more general type than the Hopfield model.

It is useful to clarify the mean-field equations in the case of
the Hopfield model because several forms of these equations
exist, under various names and acronyms as follows: belief
propagation (BP), relaxed belief propagation (rBP), Thouless-
Anderson Palmer equations (TAP), approximate message
passing (AMP), and generalized approximate message passing
(GAMP).

We shall see that each version is useful: BP and rBP form
the basis of the statistical analysis called the cavity method [23]
(also known as state evolution or density evolution in the recent
computer-science literature) which gives the phase diagram of
this problem. They can be used to derive TAP equations [24],
which are also called AMP equations in the recent computer
science literature. TAP equations were originally derived in
the Hopfield model in Ref. [23]. Through our derivation of
TAP equations as simplifications of the general BP equations
(related to the one done in Ref. [25]), we confirm the validity
of these equations, in spite of previous claims by Refs. [26,27]
that they were incorrect. All methods actually lead to the same
TAP equations as Ref. [23].

An important point which is clarified in the present
approach concerns the use of message-passing mean-field
equations in the “retrieval phase” of the Hopfield model,
the phase where the neurons polarize spontaneously in the
direction of one of the stored patterns (and where the model
can be used as an associative memory). In this phase, the
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usual simplification of BP equations into rBP, which assumes
that messages have a Gaussian distribution, is incorrect and
one must treat separately some of the messages which are
associated with the specific pattern where the polarization
develops. The equivalent of the rBP equations, taking into
account this modification (called rBP-M in the following), are
structurally distinct from the usual rBP equations. However,
this distinction disappears when one writes TAP equation. This
makes the TAP equations much better suited for algorithmic
applications.

The Hopfield model is a system of binary neurons (or
Ising spins), with infinite range pairwise interactions. It is
thus intimately related to the infinite range model of spin
glasses of Sherrington and Kirkpatrick (SK) [28], but it differs
from it in the detailed structure of the interactions between
spins. Instead of being independent random variables, the
coupling constants between the spins are built from a set
of predetermined patterns that one wants to memorize. This
structure leads to a modification of the Onsager reaction term in
the TAP equations. Our derivation shows that this modification
is easily understood by using a representation of the Hopfield
model with two layers, a layer of visible neuron variables and
a layer of hidden pattern variables. The exchange of messages
between these two layers (in which the Hopfield model is seen
as a RBM) precisely leads to the modification of the Onsager
reaction term. We will show that this structure can actually
be iterated. We define a modified Hopfield model where the
patterns are not independent random variables, but they are
built by combinations of more elementary objects, called
features. In this case, we show that the TAP equations can
be understood by a neural network with three layers, in which
one adds, between the layer of visible neuron variables and
the layer of hidden pattern variables, another layer of hidden
feature variables. This spontaneous emergence of more hidden
layers when one handles a more structured type of problem
is interesting in itself: One might hope that it could lead to
an explanation of the success of multilayered network and
deep learning in practical tasks where the information certainly
contains a deep hierarchy of combinatorial correlations.

We do not address here the full problem of learning in
the Hopfield model or in RBMs. We only study the “direct”
problem of determining the polarization of each neuron (from
which one can deduce the pair correlations by using linear
response). However, a good control of this direct problem is an
essential ingredient of most unsupervised learning protocols.

The paper is organized as follows: Section II provides
basic definitions of the Hopfield model and recalls its phase
diagram. Section III derives the mean-field equations. It starts
with the phases where there is no spontaneous polarization of
the neurons and derives successively the BP equations, their
rBP simplification using Gaussian messages, and, finally, the
TAP (or AMP) equations. It then studies the modifications
of these equations when one works in the retrieval phase.
The consistency of the BP equations with the standard replica
results (a consistency which had been disputed in Ref. [27]) is
then explicitly shown.

Section IV explains how the mean-field equations can be
turned into algorithms by iterating them with a careful update
schedule. Section V studies a modified Hopfield model in
which the patterns are no longer independent, but they are

built as combinations of more elementary random variables.
We work out the modification of BP and TAP equations in this
case, using a representation of the problem with two layers
of hidden variables on top of the layer of visible neurons.
Section VI derives the message-passing algorithms obtained
from mean-field equations (BP, rBP, and TAP) in a general
model of RBM. Section VII provides some concluding remarks
and perspectives for further studies.

II. THE HOPFIELD MODEL

A. Definitions

In the Hopfield model [22], neurons are modeled as N
binary spins si , i = 1, . . . ,N , taking values in {±1}. These
spins interact by pairs, the energy of a spin configuration is

E = −1
2

∑

i,j

Jij sisj . (1)

This is a spin-glass model where the coupling constants Jij

take a special form. Starting from P “patterns”, which are spin
configurations

ξ
µ
i = ±1, i ∈ {1, . . . N}, µ ∈ {1, . . . P }, (2)

the coupling constants are defined as

Jij = 1
N

∑

µ

ξ
µ
i ξ

µ
j . (3)

Given an instance defined by the set of couplings J = {Jij },
the Boltzmann distribution of the spins, at inverse temperature
β, is defined as

PJ (s) = 1
Z

e(β/2)
∑

i,j Jij si sj . (4)

Using a Gaussian transformation, the partition function Z can
be rewritten as

Z =
∑

s

∫ ∏

µ

dλµ√
2π/β

× exp

⎡

⎣−β

2

∑

µ

λ2
µ + β

∑

µ,i

ξ
µ
i√
N

siλµ

⎤

⎦. (5)

This expression shows that the Hopfield model is also a
model of N binary spins si and P continuous variables with a
Gaussian measure, λµ, interacting through random couplings
ξ

µ
i /

√
N which are independent identically distributed random

variables taking values ±1/
√

N with probability 1/2. This
is nothing but a restricted Boltzmann machine in which the
visible neurons are binary variables that interact with P hidden
continuous variables with a Gaussian distribution. The variable
λµ can be interpreted as the projection of the spin configuration
on the pattern µ, as suggested by the identity relating its mean
⟨λµ⟩ and the expectations values of the spins:

⟨λµ⟩ = 1√
N

∑

i

ξ
µ
i ⟨si⟩. (6)

022117-2



MEAN-FIELD MESSAGE-PASSING EQUATIONS IN THE . . . PHYSICAL REVIEW E 95, 022117 (2017)

FIG. 1. Phase diagram of the Hopfield model from Ref. [30].

B. Known results

The phase diagram of the Hopfield model has been studied
in detail in Refs. [29,30] and subsequent papers. In the
thermodynamic limit where the number of neurons N and
the number of patterns P go to infinity with a fixed ratio
α = P/N , the phase diagram is controlled by the temperature
T = 1/β and the ratio α. One finds three main phases:

(i) The paramagnetic phase. At high-enough temperatures,
T > Tg(α), the spontaneous polarization of each neuron
vanishes ⟨si⟩ = 0.

(ii) The retrieval phase. In a regime of low-enough tem-
perature and low-enough α, there exists a retrieval phase,
where the neurons have a spontaneous polarization in the
direction of one of the stored patterns µ. This means that,
in the thermodynamic limit:

1
N

∑

i

⟨si⟩ξµ
i = M, (7)

1
N

∑

i

⟨si⟩ξν
i = 0 (ν ̸= µ). (8)

For symmetry reasons, there exist two retrieval states; One
with a polarization M > 0 (where M is a function of α,β)
and one with the polarization −M (pointing opposite to the
pattern).

The transition corresponding to the appearance of retrieval
states is a first-order transition. One should thus distinguish
two temperatures: At T < TM (α), retrieval states first appear
as metastable states, and at a lower temperature T < Tc(α),
they become global minima of the free energy.

(iii) The spin-glass phase. In an intermediate range of
temperature, or at large α, the neurons acquire a spontaneous
polarization, but in some directions which are not in the
direction of one of the patterns. In the spin-glass phase, the

spin-glass order parameter q, defined by

q = 1
N

∑

i

⟨si⟩2 (9)

is strictly positive, while

∀µ :
1
N

∑

i

⟨si⟩ξµ
i = 0. (10)

The phase diagram is recalled in Fig. 1.

III. MEAN-FIELD EQUATIONS

A. Belief propagation

We use the representation (5) of the Hopfield model.
Figure 2 shows the factor graph for this problem. The BP
equations are written using the standard procedure, and we
shall only sketch the derivation here and refer the reader
to extensive presentations (see, for instance, Ref. [12]) for
details. For the Hopfield model, this approach was first used
by Ref. [25].

The main expressions used in the BP equations are as
follows:

(i) The distribution of the neuron variable si in the absence
of the pattern variable λµ. Denoted as mi→µ(si), this “cavity”
distribution can be viewed as a message sent on the edge of
the factor graph, from si towards λµ (see Fig. 2).

(ii) The distribution of the pattern variable λµ in the
absence of the neuron variable si . This other cavity distribution
is denoted as mµ→i(λµ) and can be viewed as a message sent
on the edge of the factor graph, from λµ towards si .

On top of the messages mi→µ(si) and mµ→i(λµ), it is also
convenient to introduce two auxiliary messages,

m̂µ→i(si) =
∫

dλµ√
2π/β

mµ→i(λµ)

× exp
[
−(β/2)λ2

µ + (β/
√

N )ξµ
i siλµ

]
, (11)

m̂i→µ(λµ) =
∑

si

mi→µ(si) exp
[
(β/

√
N )ξµ

i siλµ

]
. (12)

si

λµ

mi→µ

mµ→i

m̂µ→i
m̂i→µ

FIG. 2. Factor graph of the Hopfield model, in the representation
using neuron variables (si , left circles) and pattern variables (λµ, right
circles). For each pair of neuron variable and pattern variable, there is
an interaction factor (squares). The graph also defines the messages
used in belief propagation
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The BP approximation amounts to assuming that, when
one computes the message mi→µ(si), the contributions coming
from each of the λν variables are uncorrelated. This implies

mi→µ(si) ∼=
∏

ν (̸=µ)

m̂ν→i(si) (13)

[in this paper, the symbol “∼=” denotes equality up to a constant:
If p( · ) and q( · ) are two measures on the same space—not
necessarily normalized—we write p(x) ∼= q(x) if there exists
C > 0 such that p(x) = C q(x)].

Similarly, when computing mµ→i(λµ), one assumes that the
contributions from each of the sj variables are uncorrelated:

mµ→i(λµ) ∼= e−(β/2)λ2
µ

∏

j (̸=i)

m̂j→µ(λµ). (14)

Equations (11)–(14) can be simplified as follows. The message
mi→µ(si), being a probability of a binary variable, can be
parameterized in terms of a single number hi→µ, denoted
“cavity field”, defined by:

mi→µ(si) ∼= eβhi→µsi . (15)

Similarly,

m̂µ→i(si) ∼= eβĥµ→i si . (16)

This gives the BP equations:

hi→µ =
∑

ν (̸=µ)

ĥν→i , (17)

eβĥµ→i si ∼=
∫

dλµmµ→i(λµ) exp
[
(β/

√
N )ξµ

i siλµ

]
, (18)

m̂i→µ(λµ) ∼= cosh β
[
hi→µ +

(
ξ

µ
i /

√
N

)
λµ

]
, (19)

mµ→i(λµ) ∼= e−(β/2)λ2
µ

∏

j (̸=i)

m̂j→µ(λµ). (20)

It is clear that in these equations one can use the explicit
expressions of m̂i→µ and ĥµ→i and close the equations on the
two sets of messages hi→µ and mµ→i .

B. Relaxed BP equations

The general BP equations are not very useful because the
messages mµ→i and m̂i→µ are functions of the continuous
variables λµ. However, the messages can be simplified by
noticing that, in the thermodynamic limit, they are actually
Gaussian distributions and can be parameterized by just two
moments. This simplification leads to equations that are
usually called “relaxed BP” (rBP) in the literature. It was
first used in the cavity method for systems with long-range
interactions [23] and has been developed in various problems
of communication theory [31–34].

We shall first work out this simplification in the phase where
there is no condensation on any pattern. Technically, this means
that the distributions mµ→i(λµ) are dominated by values of λµ

which are finite (in the large N limit). It is easy to see that,
in this case, (19) can be expanded around λµ/

√
N = 0 and

the BP equations (17)–(20) close under the hypothesis that the
messages mµ→i(λµ) are Gaussian distributions.

Under this assumption, one can parameterize these mes-
sages in terms of their two first moments. This leads to the

so-called rBP equations. We define:

aµ→i =
∫

dλµmµ→i(λµ)λµ, (21)

cµ→i =
∫

dλµmµ→i(λµ)λ2
µ − a2

µ→i . (22)

In order to derive the rBP equations, we first derive the
asymptotic form of the function m̂i→µ(λµ) in the large-N limit:

m̂i→µ(λµ) = exp
{
β

ξ
µ
i√
N

λµ tanh(βhi→µ)

+ β2

2N
λ2

µ[1 − tanh2(βhi→µ)]
}
. (23)

Inserting this expression into (20) we get

cµ→i = 1
β

1

1 − (β/N )
∑

j (̸=i)[1 − tanh2(βhj→µ)]
, (24)

aµ→i = 1√
N

∑
j (̸=i) ξ

µ
j tanh(βhj→µ)

1 − (β/N )
∑

j (̸=i)[1 − tanh2(βhj→µ)]
. (25)

Equation (17) and (18) can be rewritten as follows:

hi→µ =
∑

ν (̸=µ)

ξν
i√
N

aν→i . (26)

Equations (25) and (26) form a set of 2NP equations for the
2NP variables aµ→i and hi→µ. These are the rBP equations
for the Hopfield model.

C. TAP (or AMP) equations

The rBP equations relate messages propagated along the
edges of the factor graph (in the language of spin glasses they
are “cavity equations”). In the large-N limit it is possible, and
very useful for algorithmic purposes, to simplify these rBP
equations and turn them into a set of equations which relate
“site” quantities associated with the variable nodes of the factor
graph. This allows us to go from 2NP variables to N + P
variables and leads to an effective reduction of computer time
and memory. The equations that relate them are analogous to
those found in Ref. [24] for spin glasses, hence the name TAP
equations. In computer science, they are often called AMP
equations [14,16–18,35–37]. To avoid confusion, notice that,
in their paper on the Hopfield model [25], Kabashima and
Saad use the same word (TAP equations) both for the rBP
equations and what we call TAP equations. We prefer to use
two different terms, in line with the terminology which is
presently most common in information theory.

The site variables are local fields defined as follows:

Hi =
∑

ν

ξ ν
i√
N

aν→i , (27)

Aµ = 1√
N

∑
j ξ

µ
j tanh(βhj→µ)

1 − (β/N )
∑

j [1 − tanh2(βhj→µ)]
. (28)
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They give the expectation values of the variables

⟨si⟩ = Mi = tanh(βHi), (29)

⟨λµ⟩ = Aµ. (30)

We shall derive here a closed set of N + P equations that
relate these N + P variables.

The main idea of the derivation of TAP equations comes
from the observation that the rBP message aµ→i should be
nearly equal to Aµ, up to small corrections that can be handled
perturbatively in the large-N limit. Similarly, hi→µ is nearly
equal to Hi , up to small corrections. Let us work out the explicit
form of these corrections. We define

q = 1
N

∑

i

tanh2(βHi). (31)

We first notice that

hj→µ = Hj −
ξ

µ
j√
N

aµ→j . (32)

Therefore,
1
N

∑

j

[1 − tanh2(βhj→µ)] ≃ 1 − q (33)

up to corrections which vanish when N → ∞. Therefore,

Aµ ≃ 1
1 − β(1 − q)

1√
N

∑

j

ξ
µ
j tanh(βhj→µ) (34)

and

aµ→i ≃ Aµ − 1
1 − β(1 − q)

1√
N

ξ
µ
i tanh(βhi→µ). (35)

In this last expression, the second term is a correction of order
1/

√
N . In this correction, we can substitute hi→µ by Hi , the

difference would give a contribution of order O(1/N ) to aµ→i ,
which can be neglected. Therefore,

aµ→i ≃ Aµ − 1
1 − β(1 − q)

1√
N

ξ
µ
i tanh(βHi). (36)

Substituting this expression in the definition (27) of Hi we get

Hi ≃
∑

ν

ξ ν
i√
N

Aν − α

1 − β(1 − q)
tanh(βHi). (37)

Considering now the definition (28) of Aµ, we can expand
it as

Aµ = 1
1 − β(1 − q)

∑

j

ξ
µ
j√
N

tanh

[

β

(

Hj −
ξ

µ
j√
N

aµ→j

)]

≃ 1
1 − β(1 − q)

∑

j

ξ
µ
j√
N

tanh

[

β

(

Hj −
ξ

µ
j√
N

Aµ

)]

+O(1/N)

≃ 1
1 − β(1 − q)

∑

j

ξ
µ
j√
N

×
[

tanh(βHj ) − β
ξ

µ
j√
N

(1 − tanh2(βHj )Aµ

]

. (38)

This gives

Aµ = 1√
N

∑

j

ξ
µ
j tanh(βHj ). (39)

Equations (37) and (39), together with the definition (31),
are the TAP (or AMP) equations which relate the N + P
variables Hi and Aµ. It turns out that they are linear in Aµ,
and these variables can thus be eliminated (notice, however,
that this is a specific feature of the Hopfield model, due to the
Gaussian nature of variables λµ: As we shall see in Sec. VI,
this is no longer true for more general RBMs, where the
measure on λµ is non-Gaussian). Eliminating Aµ, we write
closed equations for the N local fields Hi ,

Hi = 1
N

∑

j

Jij tanh(βHj ) − α

1 − β(1 − q)
tanh(βHi).

(40)

An alternative presentation of these TAP equations are in terms
of the local magnetizations Mi = tanh(βHi):

Mi = tanh

⎡

⎣β
∑

j

JijMj − αβ

1 − β(1 − q)
Mi

⎤

⎦, (41)

= tanh

⎡

⎣β
∑

j (̸=i)

JijMj − αβ2(1 − q)
1 − β(1 − q)

Mi

⎤

⎦, (42)

q = 1
N

∑

i

M2
i . (43)

These TAP equations were first derived in Ref. [23] using the
cavity method. The re-derivation that we have presented here
uses a different approach, namely the BP equations and their
simplification at large N , and obtains the same result.

The claims in Refs. [26,27], according to which these equa-
tions are wrong, were probably based on their misunderstand-
ing of the presence of diagonal terms in (41). Actually, the TAP
equations that they derive agree with ours, and with the original
finding in Ref. [23], as can be seen explicitly in the form (42).

While Ref. [23] claimed (without writing the proof) that
the TAP equations (43) reproduce the known equilibrium
properties of the Hopfield model found with replicas, it was
stated in Refs. [26,27] that they do not give the well-known
value of the spin-glass transition temperature Tg and that they
disagree with the result of the replica method. These statements
are not correct. We provide below the explicit proof that our
rBP and TAP equations are in perfect agreement with the
replica result and therefore with the known value of Tg , as
stated in Ref. [23]. The following derivation also gives a
useful pedagogical example of how the equilibrium results
can be obtained from the mean-field equations: The critical
temperature can be analyzed through a study of the TAP
equations, while the replica result for the order parameter can
be obtained from a statistical analysis of the rBP equations.

D. rBP and TAP (AMP) equations in the retrieval phase

Let us work out the modifications that take place in the
retrieval phase, when the measure condenses on one pattern (a
similar analysis can be carried out easily in the mixed phase
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where the condensation takes place on a finite number of
patterns, we shall keep here to the retrieval phase). In the
retrieval phase corresponding to pattern µ = 1, one expects
that the distribution of λ1 will be dominated by values close
to λ1 = M

√
N . When deriving BP equations, the message

m̂i→1(λ1) takes the form:

m̂i→1(λ1 = M
√

N ) = cosh β
(
hi→1 + M ξ 1

i

)
. (44)

Therefore,

m1→i(λ1 = M
√

N ) ∼= eNψ1→i (M), (45)

where

ψ1→i(M) = −β

2
M2 + 1

N

∑

j (̸=i)

log cosh
[
β
(
hj→1 + M ξ 1

j

)]
.

(46)

In the large-N limit, the measure m1→i(M) is dominated by
the maximum of the function ψ1→i(M). One should notice that
in the large-N limit this function converges to

ψ(M) = −β

2
M2 + 1

N

∑

j

log cosh
[
β
(
hj→1 + M ξ 1

j

)]
.

(47)

The maximum of ψ(M) can be either in M = 0 or in M =
±M∗, where M∗ is the largest solution of the equation

M = 1
N

∑

j

ξ 1
j tanh

[
β
(
hj→1 + Mξ 1

j

)]
. (48)

The retrieval phase is the phase where the maximum is
obtained at M = ±M∗. In this case, the rBP equations (25)
and (26) are modified, because the messages m1→i , instead of
being Gaussian distributions with finite means and variances,
become dominated by values of λ1 close to M

√
N . The new

set of equations obtained in this regime will be denoted rBP-M
(for relaxed belief propagation–magnetized) equations,

aµ→i = 1√
N

∑
j (̸=i) ξ

µ
j tanh(βhj→µ)

1 − (β/N )
∑

j (̸=i)[1 − tanh2(βhj→µ)]
, µ ! 2,

(49)

hi→µ =
∑

ν (̸=µ,1)

ξν
i√
N

aν→i + M ξ 1
i , µ ! 2, (50)

hi→1 =
∑

ν (̸=1)

ξν
i√
N

aν→i . (51)

The rBP-M equations in the retrieval phase with condensation
on pattern 1 are given by (48)–(51).

It should be noticed that they involve a completely different
estimate for the message a1→i when compared to the rBP
equations without condensation. In particular, they cannot
be obtained from (25) and (26) by just assuming that a1→i

becomes of order
√

N [such a procedure is unable to reproduce
Eq. (48)]. The reason is that the condensation is a first-
order transition, and the rBP equations in the retrieval phase
correspond to a solution M > 0 to Eq. (48) that differs from the
usual one with M = 0 [in which case one needs to consider

the O(1/
√

N ) corrections as in (25)]. The main drawback
of these rBP-M equations is that one must use a different
set of equations depending on the pattern towards which
the system polarizes. This is quite inefficient for algorithmic
applications: If one does not know a priori which pattern is
being retrieved, one should run in parallel P = αN different
algorithms, each one testing the possible polarization towards
one of the patterns, and compare the results.

Fortunately, the situation is much better when considering
TAP equations. It is straightforward to go from these rBP-M
equations to the TAP (or AMP) equations for the retrieval
phase. One gets:

Hi =
∑

ν!2

ξν
i√
N

Aν − α

1 − β(1 − q)
tanh(βHi) + M ξ 1

i , (52)

Aµ = 1√
N

∑

j

ξ
µ
j tanh(βHj ), µ ! 2, (53)

M = 1
N

∑

j

ξ 1
j tanh(βHj ). (54)

It turns out that these TAP equations are exactly the ones that
would be obtained from the usual TAP equations (37) and
(39), assuming that A1 =

√
NM . This is rather remarkable

considering the fact that the rBP-M equations in the retrieval
phase cannot be obtained continuously from the rBP equations
without retrieval (because of the first-order phase transition
discussed above). The discontinuity in the set of rBP equations
when going from the uncondensed to the retrieval phase thus
disappears when one uses instead the TAP (GAMP) equations.
This makes the TAP equations a much better choice for
algorithmic applications.

E. Consistency with the replica results

While the critical temperature can be derived from TAP
equations, a complete solution of the problem, including
the computation of the spin-glass order parameter and the
polarization, requires us to use the cavity method, which
amounts here to a statistical analysis of the rBP (or rBP-M)
equations.

1. Critical temperature

The paramagnetic solution of the TAP equations (41)
and (43) is the solution with zero local magnetizations,
∀i : Mi = 0. The spin-glass transition is a second-order
phase transition, and therefore its temperature Tg = 1/βg is
the largest temperature where a solution with nonzero local
magnetization exists. It can be found by linearizing the TAP
equations (41) and (43) and identifying their instability point.
Explicitly, the linearization gives:

Mi = β
∑

j

JijMj − αβ

1 − β
Mi + O(M3). (55)

The direction of instability is the one of the eigenvector of the
J matrix with largest eigenvalue. Denoting by λmax this largest
eigenvalue, the value of βg is given by

1 = βgλmax − αβg

1 − βg

. (56)
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By definition, λmax is the largest eigenvalue of the matrix
N × N matrix J = (1/N)ξξT , where the N × P matrix ξ
has independent identically distributed random entries taking
values ±1 with probability 1/2. In fact, the distribution of the
largest eigenvalue of J concentrates around

λmax = (1 +
√

α)2. (57)

This result can be derived using the replica method or the cavity
method. An easy way to obtain it is to realize that the value of
λmax depends only on the first two moments of the distribution
of the matrix elements ξ

µ
i . In particular, it is the same as the one

which would be obtained if the entries of ξ were independent
identically distributed with a normal distribution of mean 0
and variance 1. This last case is very well known since the
work of Marcenko and Pastur [38], and it gives the value of
λmax written in (57).

Using (57), the value of βg obtained from (56) is

βg = 1
1 +

√
α

. (58)

This agrees with the well-known result of Ref. [30] for the
critical temperature: Tg = 1 +

√
α.

2. Order parameter

The cavity or BP equations can be used in two distinct
ways: On a single instance they can be solved by iteration,
and if a fixed point is found, then this idea may be used as
an algorithm for estimating the local magnetizations. But in
the case where the instances are generated from an ensemble
(like the case that we study here, where the ξ

µ
i are independent

identically distributed random variables), one can also perform
a statistical analysis of the equation. This is the essence of the
cavity method and is also known in the literature on message
passing as the density evolution.

We will show that this statistical analysis of the cavity
equations gives the same results as the replica method,
as claimed in Ref. [23], and contrary to the statements
of Ref. [27]. For simplicity, we keep here to the “replica
symmetric” approximation.

We start from the rBP equations. Considering first the
equation (26) giving the cavity field hi→µ, we notice that, as the
variables ξ

µ
i are independent identically distributed, provided

that the correlations of the messages aν→i are small enough
(this is the essence of the replica symmetric approximation; see
Refs. [12,23]), the cavity field hi→µ has a Gaussian distribution
with mean 0 and a variance which is independent of the indices
i and µ and that we denote by h2. Similarly, aν→i has a
Gaussian distribution with mean 0 and a variance which is
independent of the indices i and ν and that we denote by a2.
The rBP equations (25) and (26) relate these two variances:

h2 = αa2, (59)

a2 = q

[1 − β(1 − q)]2 . (60)

We thus obtain:

q = tanh2(βh) =
∫

dh√
2π(

e−h2/(2() tanh2(βh), (61)

where

( = αq

[1 − β(1 − q)]2 , (62)

Equations (61) and (62) are exactly the well-known equations
[30] that allow us to compute the spin-glass order parameter
q in the spin-glass phase of the Hopfield model in the replica-
symmetric framework.

In the retrieval phase, the same reasoning can be applied
starting form the rBP-M equations (48) and (51). One finds:

q = tanh2(βh + βξM), (63)

M = ξ tanh(βh + βξM), (64)

where the overline denotes the average with respect to the
field h, which has a Gaussian distribution of variance (, and
the binary variable ξ which takes values ±1 with probability
1/2. These are precisely the equations obtained in the retrieval
phase with the replica method [30]. In particular, one can
identify the appearance of the retrieval phase (the line TM in
Fig. 1) by analyzing when the equations (63) and (64) have
a solution with M ̸= 0 (in order to derive the value of the
equilibrium phase transition Tc one needs to compute the free
energy in the retrieval phase and in the spin-glass phase and
see when they are equal).

IV. ALGORITHMS: ITERATIONS AND TIME INDICES

Mean-field equations are usually solved by iteration and
interpreted as message-passing algorithms. Turning a set of
mean-field equations into an iterative algorithm involves a
certain degree of arbitrariness concerning the way the equa-
tions are written and the “time indices” concerning the update.
A proper choice of time indices may result in an algorithm
with much better convergence properties, as underlined, for
instance, in Refs. [13,39]. Here we review the most natural
choice for AMP iterations and their consequences.

A. rBP equations

The rBP equations (25) and (26) are usually iterated as
follows:

at+1
µ→i = 1√

N

∑
j (̸=i) ξ

µ
j tanh

(
βht

j→µ

)

1 − (β/N )
∑

j (̸=i)

[
1 − tanh2 (

βht
j→µ

)] , (65)

ht+2
i→µ =

∑

ν (̸=µ)

ξν
i√
N

at+1
ν→i . (66)

There exist various types of update schemes. One can
distinguish two main classes:

(a) In the parallel update, starting from a configuration of
the h messages at time t , one computes all the a messages
using (65). Then one computes all the new h messages at time
t + 2 using (66), with the a messages of time t + 1 (therefore
the h messages are defined at even times, and the a messages
are defined at odd times). In two time steps, all the messages
are updated.

(b) In an update in series, one picks up a message at random
(or, better, one can use a random permutation of all messages
to decide on the sequence of updates), and one updates it using
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either (65)—if the message is an a message—or (66). In the
case of random permutations, all messages are updated after
2NP time steps.

In the parallel update scheme, one can easily follow the
evolution in time of the overlap qt . Using (65) and (66), one
can perform again the analysis of Sec. III E 2 keeping the time
indices. This gives

qt+2 =
∫

dh√
2π(t

e−h2/(2(t ) tanh2(βh), (67)

where

(t = αqt

[1 − β(1 − qt )]2 . (68)

It is easy to see that these equations converge (to q = 0) when
T > Tg = 1 +

√
α.

B. TAP equations

We can now repeat the previous derivation of the TAP
equations, keeping track of the time indices that were written
in the previous subsection. We keep here to the case of parallel
update. Defining:

At+1
µ = 1√

N

∑
j ξ

µ
j tanh

(
βht

j→µ

)

1 − (β/N )
∑

j

[
1 − tanh2 (

βht
j→µ

)] , (69)

Ht+2
i =

∑

ν

ξ ν
i√
N

at+1
ν→i , (70)

one gets

At+1
µ = 1

1 − β(1 − qt )
1√
N

∑

j

ξ
µ
j tanh

(
βHt

j

)

− β(1 − qt )
1 − β(1 − qt )

At−1
µ , (71)

Ht+2
i =

∑

ν

ξ ν
i√
N

At+1
ν − α

1 − β(1 − qt )
tanh

(
βHt

i

)
. (72)

Equations (71) and (72) give the algorithmic version of TAP
equations, used through a parallel iteration.

Again, the A variables can be eliminated from these
equations, leaving the TAP equations written in terms of the
local fields Ht

i or the magnetizations Mt
i = tanh(βHt

i ). This
requires a little bit of care since the A variables appear with
different time indices in the two sides of Eq. (71). Defining
ut = β(1 − qt ), we can re-express (71) as

At+1
µ + ut

1 − ut
At−1

µ = 1
1 − ut

1√
N

∑

j

ξ
µ
j tanh

(
βHt

j

)
. (73)

This suggest to use (72) at times t + 2 and at time t in the
form:

Ht+2
i + ut

1 − ut
H t

i =
∑

ν

ξ ν
i√
N

(
At+1

ν + ut

1 − ut
At−1

ν

)

− α

1 − ut
Mt

i − ut

1 − ut

α

1 − ut−2
Mt−2

i .

(74)

Substituting (74) into (73), one can eliminate the A variables.
Using τ = t/2 we get

H τ+1
i = 1

1 − uτ

⎡

⎣
∑

j

JijM
τ
j − αMτ

i − uτH τ
i

− αuτ

1 − uτ−1
Mτ−1

i

⎤

⎦. (75)

This final form of the iterative algorithm corresponding to
TAP equation involves a kind of memory term (the polarization
of neuron i at time τ + 1 is obtained from polarizations at time
τ and τ − 1), a phenomenon that was first found in the context
of TAP equations for the SK model [39] and used in Ref. [13].

This algorithm has many advantages. It involves only N
fields, and therefore its iteration is fast, and above all it can
develop a spontaneous polarization towards one of the stored
patterns (while in the rBP equations one would need to use a
different equation for each of the patterns).

C. Numerical results

The iteration of TAP equations (71) and (72), or, equiv-
alently, their expression in terms of the H fields only (75),
is a fast algorithm for solving the Hopfield model (in the
sense of obtaining the local polarizations of the neuron
variables). We have tested it in the retrieval phase, starting
from a configuration with overlap M0 with one randomly
chosen pattern µ0. This means that we generate an initial spin
configuration s0

i as

s0
i = ξ

µ0
i with probability (1 + M0)/2, (76)

s0
i = −ξ

µ0
i with probability (1 − M0)/2. (77)

The initial field H 0
i at time zero is then fixed as H 0

i = (8/β)s0
i ,

so (1/N )
∑

i ξ
µ0
i tanh(βH 0

i ) = M0 up to fluctuations of order
1/

√
N .

Figure 3 shows the probability that the iteration of these
equations converges to a fixed point with a value of overlap
with µ0, given by (1/N)

∑
i tanh(βHi)ξ

µ0
i , larger than 0.95

[the convergence is defined by the fact that, in (75), the average
value of |H τ+1

i − H τ
i | < 10−6]. The simulations were carried

out with networks of N = 1000 neurons. The maximal number
of iterations was fixed to 200, but in practice we notice that
when the algorithm converges it does so in a few iterations, of
order 10 to 20.

It should be noticed that the iteration of simpler versions
of the mean-field equations, either the naive mean-field
equations or the SK-TAP equations with the correct time
indices of Ref. [39], also converge when initialized in the same
conditions. Actually, the basin of attraction for convergence to
an overlap >0.95 with the pattern is larger for naive mean field
than it is for SK-TAP, and the one for SK-TAP is larger than
for the correct Hopfield TAP equations. This is probably due
to the fact, noticed in Ref. [25], that the fixed point reached by
naive mean field is actually closer to the pattern than the fixed
point reached by SK-TAP, which is itself closer to the pattern
than the one obtained by iterating TAP equations. However,
the TAP equations have one major advantage: They give the
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FIG. 3. Iteration of TAP equations using (75). The probability of convergence is plotted versus the overlap to a randomly chosen initial
pattern µ0. Left-hand figure: temperature T = 0.01, simulation with N = 1000 neurons, and P = 40,60,80,100,120 patterns (from left to
right). Right-hand figure: temperature T = 0.3, simulation with N = 1000 neurons, and P = 40,60,80,100 patterns (from left to right).

values of the polarizations of neurons which become exact in
the thermodynamic limit.

Although they are a priori much slower, one may also
wonder about the numerical behavior of the rBP-M equations
in the retrieval phase (48)–(51). These can be iterated for
instance as follows. One first initializes the fields hj→µ to
(8/β)s0

i as above. Then:
(i) Given the fields {hj→µ}, compute the “magnetization”

M by solving Eq. (48) for condensation on pattern µ1. This
equation can be solved for instance by iteration, starting from
the value of M found at the previous iteration (initially we start
the iteration with M = 1).

(ii) Compute the fields {aµ→j } using (49).
(iii) Compute the fields {hj→µ} using (50) and (51) (NB:

in order to improve convergence, we use a “damping” term in
the computation of the fields {hj→µ}: Instead of substituting
the old value of hj→µ by the new one, we substitute it by the
arithmetic mean of the old and the new one).

Experimenting with these rBP-M equations we find that,
in the retrieval phase, they converge fast (in a few iterations).
However, the fixed point to which they converge depends very
little on the initial overlap M0 with pattern µ0. Actually, the
fixed point is the one corresponding to the pattern µ1 = 1
onto which the condensation has been assumed: The rBP-M
equations tell us that each of the memorized patterns is a
fixed point, and the initialization of the hj→µ messages in the
direction of pattern µ0 plays little role. Instead of using the
pattern as an initial condition, the rBP-M equations should
be used numerically with pattern µ0 playing the role of a
permanent external field that biases the activity of each neuron,
as was done, for instance, in Ref. [40].

V. MODIFIED HOPFIELD MODEL: CORRELATED
PATTERNS WITH COMBINATORIAL STRUCTURE

From its definition (1), the Hopfield model is a type of
spin glass. It differs from the SK model by the structure of
couplings. In the SK model, one draws each Jij (for i < j ) as

an independent random variable with mean zero and variance
1/N . In the Hopfield model, one builds the Jij coupling
constants as bilinear superposition of patterns, see (3). It turns
out that this modification in the generation of the couplings
induces a crucial modification of the TAP equations. In the SK
model, the TAP equations are as follows [24]:

Mi = tanh

⎡

⎣β
∑

j (̸=i)

JijMj − β2(1 − q)Mi

⎤

⎦. (78)

The structure is the same in the Hopfield model, but the precise
form of the second term (the so-called Onsager reaction term)
differs. For an instructive comparison, it is useful to rescale
the interactions of the Hopfield model in such a way that
the variance of the couplings are 1/N , defining thus Jij =

1√
α

1
N

∑
µ ξ

µ
i ξ

µ
j . This simple rescaling can be absorbed in a

rescaling of β, and our TAP equations (41) become, in this
rescaled Hopfield model,

Mi = tanh

⎡

⎣β
∑

j (̸=i)

JijMj − β2(1 − q)
1 − β(1 − q)/

√
α

Mi

⎤

⎦. (79)

Therefore, the change of structure of the Jij random variables
leads to a modification of the TAP equations, where the
Onsager term acquires a denominator 1/[1 − β(1 − q)/

√
α].

Clearly, in the large-α limit one recovers the TAP equations of
the SK model, as it should be, since the correlations between
the Jij become irrelevant in this limit.

The fact that the TAP equations depend on the type of
structure of the couplings Jij poses a challenge for their use
in practical applications, where one does not really know the
structure of these couplings. One elegant way out consists in
adapting the reaction term to the concrete set of couplings to
which one is applying the method [7,41]. Our approach in the
present paper considers instead an alternative representation
of the Hopfield model, in which the visible neuron variables
interact with a hidden layer of pattern variables. In this
expanded representation, the couplings between the visible
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and the hidden units are nothing but the patterns, which are
independent random variables. Therefore the message passing
equations (BP, rBP, and eventually TAP) can be written safely
and give the result.

The standard results of the Hopfield model hold as long as
the ξ

µ
i are independent identically distributed random variables

with zero mean and unit variance. We test our approach by
studying a generalization of the Hopfield model in which the
patterns are no longer independent random variables. We shall
study the case where the patterns have a correlation, created
from the following structure:

ξ
µ
i = 1√

γN

γN∑

r=1

ur
i v

r
µ, (80)

where the ur
i are independent identically distributed random

variables drawn from a distribution Pu with zero mean and unit
variance, and the vr

µ are independent identically distributed
random variables drawn from a distribution Pv with zero mean
and unit variance. Note that the scaling has been chosen such
that, in the large-γ limit, the pattern elements ξ

µ
i become

independent identically distributed Gaussian random variables
with unit variance, and one finds the standard Hopfield model.

We call the type of disorder generated by (80) a combinato-
rial disorder. A natural case where it occurs is as follows:
Imagine that the patterns are built from a number γN of
possible features, where the feature number r is described
by the neural activity ur

i . The variable vr
µ encodes to what

extent feature r belongs to pattern µ. For instance, using binary
variables vr

µ = ±1, one can interpret vr
µ = 1 if and only if

feature r belongs to feature µ. Then the pattern µ on site i
is (up to an overall constant), by the sum of the features r
belonging to µ.

In combinatorial disorder, the random patterns expressed
as (80) can be seen as a kind of superposition of features. This
is in contrast with usual types of correlations that were studied
in previous years, like biased patterns or Gaussian-distributed
patterns with a nontrivial correlation matrix. Obviously, the
structure of combinatorial disorder can be elaborated further
and the features could become themselves combination of
subfeatures, and so on.

We shall now develop the mean-field equations for this
modified model.

A. Representation with hidden variables

Using the representation (5), the partition function of the
modified Hopfield model with combinatorial disorder can be
written as

Z =
∑

s

∫ ∏

µ

dλµe−βλ2
µ/2

√
2πβ

× exp

[
β

√
γ

γN∑

r=1

(∑
i u

r
i si√

N

)(∑
µ vr

µλµ√
N

)]

. (81)

It is useful to introduce the auxiliary variables

Ur = 1√
N

∑

i

ur
i si (82)

and to use the representation

1 = β

2π i

∫
dUrdÛ r exp

[

βÛ r

(
1√
N

∑

i

ur
i si − Ur

)]

,

(83)

where the auxiliary variable Û r is integrated in the complex
plane along the imaginary axis.

Similarly, we introduce the variable

V r = 1√
N

∑

µ

vr
µλµ (84)

and write an integral representation in terms of an auxiliary
variable V̂ r .

This gives, up to some overall irrelevant constants,

Z =
∑

s

∫ ∏

µ

dλµ

×
∫ ∏

r

dt⃗ re
− β

2

∑
µ λ2

µ+β
∑γN

r=1

(
+ Ur V r

√
γ

−Û rUr−V̂ rV r
)

× exp

⎡

⎣ β√
N

γN∑

r=1

N∑

i=1

Û rur
i si + β√

N

γN∑

r=1

αN∑

µ=1

V̂ rvr
µλµ

+ β
√

γ

γN∑

r=1

UrV r

⎤

⎦, (85)

where the variable t⃗ r is t⃗ r = (Û r ,Ur,V̂ r ,V r ), the integration
element is dt⃗ r = dÛ rdUrdV̂ rdV r , and the integrals overs Û r

and V̂ r run along the imaginary axis, while those over Ur and
V r are along the real axis.

The representation (85) contains three types of variables:
(i) The N visible neuron variables si .
(ii)) The αN pattern variables λµ, which are hidden

variables.
(iii) The γN “feature variables” t⃗ r , which build a new

layer of hidden variables, interacting with the other two layers.
Figure 4 shows the factor graph for this problem.

B. Belief propagation

Writing the BP equations for the model (85) is a standard
(but lengthy) exercise that goes along exactly the same lines
as before. It involves eight types of messages running along
the edges of the factor graph shown in Fig. 4. These messages
are as follows:

mi→r (si), m̂r→i(si), mµ→r (λµ), m̂r→µ(λµ), (86)

m̂i→r (t⃗ r ), mr→i(t⃗ r ), mr→µ(t⃗ r ), m̂µ→r (t⃗ r ). (87)

Here and in the following, the letters i,j are indices of the
neuron variables running from 1 to N , the letters r,s are indices
of the feature variables running from 1 to γN , and the letters
µ,ν are indices of the pattern variables running from 1 to αN .
Each message is a function of the argument which is written
in parenthesis.

We shall not write explicitly the BP equations but proceed
directly to the rBP ones, which can be expressed in terms of
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FIG. 4. Factor graph of the Hopfield model with combinatorial
patterns in the representation using visible neuron variables (si ,
left layer, green circles), hidden pattern variables (λµ, right layer,
blue circles), and hidden feature variables (middle layer, purple
circles). There exist interaction factors (squares) between each pair
of variables belonging to two consecutive layers.

the messages hi→r ,aµ→r ,cµ→r defined from

mi→r (si) ∼= ehi→r si , (88)
∫

dλµmµ→r (λµ) λµ = aµ→r , (89)
∫

dλµmµ→r (λµ) λ2
µ = cµ→r + a2

µ→r . (90)

They are related through the following set of equations:

hi→r = 1√
N

∑

s (̸=r)

us
i f (ps→i ,ds→i ,πs ,δs), (91)

cν→r = 1
β

⎡

⎣1 − 1
N

∑

s (̸=r)

(
vs

ν

)2
φ′(ps,ds,πs→ν,δs→ν)

⎤

⎦
−1

, (92)

aν→r = βcν→r

1
N

∑

s (̸=r)

vs
νφ(ps,ds,πs→ν,δs→ν), (93)

where

pr = 1√
N

∑

i

ur
i tanh(βhi→r ), (94)

dr = 1
N

∑

i

(
ur

i

)2[1 − tanh2(βhi→r )], (95)

πr = 1√
N

∑

ν

vr
νaν→r , (96)

δr = 1
N

∑

ν

(
vr

ν

)2
Cν→r , (97)

and

pr→j = 1√
N

∑

i (̸=j )

ur
i tanh(βhi→r ), (98)

dr→j = 1
N

∑

i (̸=j )

(
ur

i

)2[1 − tanh2(βhi→r )], (99)

πr→µ = 1√
N

∑

ν (̸=µ)

vr
νaν→r , (100)

δr→µ = 1
N

∑

ν (̸=µ)

(
vr

ν

)2
cν→r . (101)

The functions f,φ,φ′ are functions of four variables defined
as

f (p,d,π,δ) = ⟨Û ⟩, (102)

φ(p,d,π,δ) = ⟨Û 2⟩ − ⟨Û ⟩2, (103)

φ′(p,d,π,δ) = ∂

∂π
φ(p,d,π,δ), (104)

where the expectations are taken with the following measure
over t⃗ = (U,V,Û ,V̂ ):

exp
[
β

(
−ÛU − V̂ V + 1

√
γ

UV + pÛ + π V̂

)

+ β2

2

(
dÛ 2 + δV̂ 2)

]
. (105)

An explicit computation shows that

f (p,d,π,δ) = 1
1 − dδβ2/γ

(
βδ

γ
p + 1

√
γ

π

)
, (106)

φ(p,d,π,δ) = 1
1 − dδβ2/γ

(
1

√
γ

p + βd

γ
π

)
, (107)

φ′(p,d,π,δ) = 1
1 − dδβ2/γ

(
βd

γ

)
. (108)

C. TAP equations

It turns out that the TAP equations can be written in terms
of local quantities associated with each of the variable in the
factor graph: Starting from (91)–(93), we define

Hi = 1√
N

∑

s

us
i f (ps→i ,ds→i ,πs ,δs), (109)

Cν = 1
β

[

1 − 1
N

∑

s

(
vs

ν

)2
φ′(ps,ds,πs→ν,δs→ν)

]−1

, (110)

Aν = βcν→r

1√
N

∑

s

vs
νφ(ps,ds,πs→ν,δs→ν). (111)

We first notice that, in the thermodynamic limit, Cν = C
becomes independent of ν, and we can also safely approximate
cν→r = C, the correcting terms being irrelevant. Similarly, we
notice that dr becomes r independent,

dr = 1 − q = 1 − 1
N

∑

i

tanh2(βHi), (112)

and δr becomes r independent,

δr = αC. (113)

The equation for C can be obtained from (92),

1
C

= β − β2(1 − q)
1 − Cαβ2(1 − q)/γ

, (114)
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and gives

C = γ

2αβ2(1 − q)
{1 − β(1 − q)(1 − α/γ )

−
√

[1 − β(1 − q)(1 + α/γ )]2 − 4αβ2(1 − q)2/γ },
(115)

where C is nothing but the variance of the local fields Aν

for each pattern variable. When γ → ∞ one finds back that
C = (1/β)1/[1 − β(1 − q)], which is the expression found in
the Hopfield model, as it should.

Defining

f̂ (p,π) = f (p,1 − q,π,αC)

= 1
1 − C α

γ
β2(1 − q)

(
αβC

γ
p + 1

√
γ

π

)
, (116)

φ̂(p,π) = φ(p,1 − q,π,αC)

= 1
1 − C α

γ
β2(1 − q)

[
1

√
γ

p + β(1 − q)
γ

π

]
, (117)

we can write the following TAP equations:

Hi = 1√
N

∑

s

us
i f̂ (ps,πs) − αβC

1 − C α
γ
β2(1 − q)

tanh(βHi),

(118)

Aν = 1
N

∑

s

vs
ν φ̂(ps,πs), (119)

pr = 1√
N

∑

i

ur
i tanh(βHi) − β(1 − q)

√
γ

1√
N

∑

ν

vr
ν Aν,

(120)

πr = 1√
N

∑

ν

vr
ν Aν − αβC

√
γ

1√
N

∑

i

ur
i tanh(βHi). (121)

Equations (118)–(121), together with the definitions
(115)–(117), give the closed set of TAP equations relating
the N (1 + α + 2γ ) local fields Hi,Aν,pr ,πr .

It is interesting to notice that, due to the linear structure
of these equations, the variables pr,πr can be eliminated
explicitly, leading to a set of equations that relate only the fields
on the site variables, Hi , and those on the pattern variables, Aµ:

Hi =
∑

ν

ξ ν
i√
N

Aν − αβC

1 − C α
γ
β2(1 − q)

tanh(βHi). (122)

Aµ = 1√
N

∑

j

ξ
µ
j tanh(βHj ). (123)

These TAP equations are similar to the ones of the Hopfield
model, with a modified form of the Onsager reaction term.
Again, because of their linear structure in Aµ, these variables
can be eliminated, giving a set of TAP equation connecting
only the local fields on the visible neuron variables:

Hi = 1
N

∑

j

Jij tanh(βHj ) − αβC

1 − C α
γ
β2(1 − q)

tanh(βHi).

(124)

Again, the only modification due to the combinatorially
correlated patterns is the value of the Onsager reaction term.
Notice that, in the large-γ limit, we get back the usual TAP
equation of the Hopfield model.

We have derived four versions of the mean-field equations
for this modified Hopfield: the rBP equations which relate
messages that are propagated on the edges of the factor graph
and three versions of the TAP equations: one set of “expanded”
equations which relate local quantities associated with each
variable node of the factor graph; a second one, “intermediate”,
which relates the local fields of the neuron variables and
the pattern variables; and, finally, the last one that relates
only the local fields on the neuron variables. Which one is
more useful remains to be investigated. The rBP equations
should be studied statistically and give the solution for the
thermodynamic properties of this modified Hopfield model
using the cavity method. The schedule of update of TAP
equations is probably crucial, and working out the correct
time indices for algorithmic purpose should go through the
expanded version of the equations. It should also be kept in
mind that, in general RBMs, the hidden variables are in general
not Gaussian distributed, and in such cases the simplification of
TAP equations does not occur (see the next section). Therefore,
in general, the correct form of TAP equations can be obtained
only in their expanded form. This shows the importance of
using multilayered networks.

VI. A FEW REMARKS ON MORE GENERAL
RESTRICTED BOLTZMANN MACHINES

It is easy to generalize the Hopfield model in order to
describe a general RBM. We shall give here the general
form of BP, rBP, and TAP equations. Similar results have
been obtained recently in information-theoretic approaches to
matrix factorization [42,43], but they generally address a form
of “planted” problem where specific simplifications take place
[13,44]. We give here the general form of the equations.

Using the same notations as before, we consider a system
of N neuron variables si and P pattern variables λµ, described
by a probability distribution:

P ({si},{λµ})

= 1
Z

∏

i

ρ̃(si)
∏

µ

ρ(λµ)

× exp

⎡

⎣β

⎛

⎝
∑

i

h̃isi +
∑

µ

hµλµ +
∑

µ,i

ξ
µ
i√
N

siλµ

⎞

⎠

⎤

⎦.

(125)

With respect to the usual Hopfield model, three modifications
have been introduced:

(i) The local measure on the spin variables is ρ̃(s). In the
Hopfield model one considers ρ̃(s) = (1/2)(δs,1 + δs,−1), but
more general distributions can be studied as well.

(ii) The local measure on the pattern variables is
ρ(λ). In the Hopfield model one considers ρ(λ) =
(1/

√
2πβ) exp(−βλ2/2), but more general distributions can

be studied as well.
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(iii) We introduce local fields h̃i and hµ, which will make
it possible to compute correlation functions through linear
response, using, for instance, ⟨sisj ⟩ = ∂⟨si⟩/∂h̃j .

The BP equations are as follows:

mi→µ(si) ∼= ρ̃(si) eβh̃i si

∏

ν (̸=µ)

m̂ν→i(si), (126)

m̂µ→i(si) ∼=
∫

dλµmµ→i(λµ) exp
(
(β/

√
N )ξµ

i siλµ

)
, (127)

m̂i→µ(λµ) =
∫

dsi mi→µ(si)eβξ
µ
i /

√
N, (128)

mµ→i(λµ) ∼= ρ(λµ) eβhµλµ

∏

j (̸=i)

m̂j→µ(λµ). (129)

In order to write the rBP equations, we need to understand
the scaling of the variables. In particular, we have seen in
the Hopfield model that, in the retrieval phase, one of the
variables λµ may become very large (of order

√
N ), signaling

a polarization towards this pattern. The possibility of such a
phenomenon clearly depends on the measures ρ̃(s) and ρ(λ).
In the Hopfield case, ρ(λ) is a Gaussian. This means that the
response of the pattern variable λ to a local field h is a linear
function of h. This allows the variable λµ to grow to very
large values. In contrast, in many applications of RBMs, one
uses variables with a bounded range of values. For instance, if
ρ(λµ) vanishes outside an interval [−C,C], then the response
of the variable λµ is a nonlinear, sigmoid-shaped function of
the local field, and the condensation cannot occur.

One opposite case would be the one when both ρ̃(s) and
ρ(λ) are Gaussian. It is then clear that, at low temperatures,
the spins will acquire spontaneous polarization in the direction
of the eigenvector of the J matrix [Eq. (3)] with largest
eigenvalue. Both the neuron variables and the pattern variables
condense in this case.

We shall write here the rBP equations assuming that there is
no condensation. As for the coupling variables ξ

µ
i , we suppose

that they are independent identically distributed variables with
zero mean and a finite variance.

Following standard procedures like those used in
Refs. [14–18], the messages mµ→i(λµ) and mi→µ(si) are pa-
rameterized in terms of their first two moments. Generalizing
(21) and (22), we define

aµ→i =
∫

dλµmµ→i(λµ)λµ, (130)

cµ→i =
∫

dλµmµ→i(λµ)λ2
µ − a2

µ→i , (131)

ãi→µ =
∫

dsimi→µ(si)si, (132)

c̃i→µ =
∫

dsimi→µ(si)s2
i − ã2

i→µ. (133)

The rBP equations relating these four types of messages
can be written in terms of the following four functions of two
real variables.

Considering a neuron variable s with local measure

P̃ (s) = 1
z̃
ρ̃(s)eus+(v/2)s2

, (134)

we define

f̃ (u,v) =
∫

dsP̃ (s)s, (135)

f̃ ′(u,v) = ∂

∂u
f̃ (u,v) =

∫
dsP̃ (s)s2 − f̃a(u,v)2. (136)

Considering a pattern variable λ with local measure

P (λ) = 1
z
ρ(λ)euλ+(v/2)λ2

, (137)

we define

f (u,v) =
∫

dλP (λ)λ, (138)

f ′(u,v) = ∂

∂u
f (u,v) =

∫
dλP (λ)λ2 − fa(u,v)2. (139)

The rBP equations can then be written as

at+1
µ→i = f

⎛

⎝βhµ + β√
N

∑

j (̸=i)

ξ
µ
j ãt

j→µ ,
β2

N

∑

j (̸=i)

(
ξ

µ
j

)2
c̃t
j→µ

⎞

⎠,

(140)

ct+1
µ→i = f ′

⎛

⎝βhµ + β√
N

∑

j (̸=i)

ξ
µ
j ãt

j→µ ,
β2

N

∑

j (̸=i)

(
ξ

µ
j

)2
c̃t
j→µ

⎞

⎠,

(141)

ãt+2
i→µ = f̃

⎛

⎝βh̃i + β√
N

∑

ν (̸=µ)

ξν
i at+1

ν→i ,
β2

N

∑

ν (̸=µ)

(
ξν
i

)2
ct+1
ν→i

⎞

⎠,

(142)

c̃t+2
i→µ = f̃ ′

⎛

⎝βh̃i + β√
N

∑

ν (̸=µ)

ξν
i at+1

ν→i ,
β2

N

∑

ν (̸=µ)

(
ξν
i

)2
ct+1
ν→i

⎞

⎠,

(143)

where we have reintroduced the time indices corresponding to
a parallel update of these equations.

One gets the TAP equations using the same method as
before. In the large-N limit the messages depend only weakly
on the index of arrival. Writing

aµ→i ≃ Aµ; cµ→i ≃ Cµ; ãi→µ ≃ Ãi ; c̃i→µ ≃ Ci

(144)

and expanding the leading correction terms, one obtains

At+1
µ = f

(
Ut

µ,V t
µ

)
, (145)

Ct+1
µ = f ′(Ut

µ,V t
µ

)
, (146)

Ãt+2
i = f̃

(
Ũ t+1

i ,Ṽ t+1
i

)
, (147)

C̃t+2
i = f̃ ′(Ũ t+1

i ,Ṽ t+1
i

)
, (148)
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where

Ut
µ = βhµ + β√

N

∑

i

ξ
µ
i Ãt

i

−At−1
µ

β2

N

∑

i

(
ξ

µ
i

)2
f̃ ′(Ũ t−1

i ,Ṽ t−1
i

)
, (149)

V t
µ = β2

N

∑

i

(
ξ

µ
i

)2
C̃t

i , (150)

Ũ t+1
i = βh̃i + β√

N

∑

µ

ξ
µ
i At+1

µ

− Ãt
i

β2

N

∑

µ

(
ξ

µ
i

)2
f ′(Ut

µ,V t
µ

)
, (151)

Ṽ t+1
i = β2

N

∑

µ

(
ξ

µ
i

)2
Ct+1

µ . (152)

Notice that, in general, when ρ̃(s) and ρ(λ) are non-Gaussian,
the functions f and f̃ are nonlinear functions of u, and
therefore one cannot easily eliminate one of the variables, as
was done in the Hopfield model. This means that the correct
form of TAP equations require working on the bipartite graph
with the two layers of variables, visible and hidden.

VII. CONCLUDING REMARKS

We have seen that the correct mean-field “TAP” equations
in the Hopfield model can be written most easily by introducing
a layer of hidden variables, the pattern variables, which
interact with the neuron variables. In the Hopfield model,
the local fields associated with the hidden variables can be
eliminated and one remains with TAP equations that are
similar to those of general spin glasses, differing only in the
detailed form of the Onsager reaction term. However, when
one deals with RBMs which generalize the Hopfield model

with non-Gaussian hidden variables, the representation with
the hidden layer is necessary.

In the case where the patterns to be memorized have
correlations based on a combinatorial structure, the TAP
equations involve one extra layer of hidden variables, and with
a deeper structure of correlations, extra hidden layers would
be added.

We believe that combinatorial disorder is actually an
essential ingredient that is likely to be present in real data.
In this respect, it is striking that the correct treatment of
mean-field theory in RBMs with combinatorial disorder leads
naturally to the appearance of layers of hidden variables. The
present study of the Hopfield model is a kind of first test of
this idea, which we hope could lead to a better understanding
of the role of multilayered structures in practical applications
of neural networks.

The present work calls for some further developments in
several directions:

(i) It will be interesting to study how the TAP estimates
for the magnetizations (and those for the correlation functions
that are inferred through linear response) can be turned into
efficient algorithms for unsupervised learning, along the lines
of Refs. [6–10]. In this respect, it is interesting to be able
to study controlled problems. We think that the Hopfield
model with combinatorial-correlated patterns can be used as
an interesting teacher to generate data, i.e., patterns of neural
activity, that can be used in the training of a “student” Hopfield
network.

(ii) The modified Hopfield model with combinatorial-
correlated patterns is interesting in itself. It would be inter-
esting to study its thermodynamics both with replicas and
with the cavity method through a statistical analysis of the rBP
equations.
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Statistical-Physics-Based Reconstruction in Compressed Sens-
ing, Phys. Rev. X 2, 021005 (2012).
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