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Abstract

This is the notes of a tutorial lecture given by the author at the Kavli
Institute for Theoretical Sciences on the occasion of the “Workshop on
Machine Learning and Many-Body Physics” (June 28–30, 2017, Beijing).
The concept of probabilistic graphical models and the factor-graph repre-
sentation are introduced and several well-known examples are mentioned.
Message-passing methods for approximately solving a graphical model
are introduced, especially the naive mean field method (based on the
Weiss approximation) and the belief-propagation method (based on the
Bethe-Peierls approximation). Application of message-passing methods in
combinatorial optimization and statistical inference is illustrated by two
examples. Some important advanced topics not covered in the lecture are
also listed. c©Hai-Jun Zhou, 2017.
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This is the notes of a tutorial lecture given by the author at the “Workshop
on Machine Learning and Many-Body Physics” (Kavli Institute for Theoretical
Sciences, June 28–30, 2017, Beijing). With the conservative a priori assumption
that the audience has little background knowledge on probabilistic graphical
models and message-passing procedures, the author has tried to make the lecture
and the notes as self-contained as possible, and has restricted all the discussions
at the elementary level.

1 Probabilistic graphical models

Probabilistic graphical models are widely encountered in statistical physics and
in computer science. Here we introduce the factor-graph representation for this
type of many-body interaction systems, and discuss the partition function and
free energy of a general probabilistic graphical model. We begin with some
simple examples.

1.1 Some examples of energy functions

The (generalized) Ising model is defined on a graph of vertices and edges and it
has the following energy function

E(σ1, σ2, . . . , σN ) = −
∑

(i,j)∈G

Jijσiσj −
N∑
k=1

h0kσk . (1)

Here Jij denotes the spin coupling constant on an edge (i, j) of the graph be-
tween two vertices i and j, and h0k is the external (magnetic) field on vertex k.
The state σi of vertex i ∈ {1, 2, . . . , N} is assumed to be binary so σi ∈ ±1. If all
the couplings Jij are non-negative the model is the ferromagnetic Ising model.
If Jij has roughly equal chances of being positive and negative, the model is
then a spin glass system.

A representative many-body interaction model is the exclusive-or (XOR)
satisfiability problem involving N binary spins σi ∈ ±1, with energy function

E(σ1, σ2, . . . , σN ) =

M∑
a=1

1

2

(
1− Ja

∏
i∈∂a

σi

)
, (2)

where Ja ∈ ±1 is the fixed coupling constant of interaction a, which involves a
set (denoted as ∂a) of vertices. Notice the energy of an interaction a is zero if∏
i∈∂a σi has the same sign as Ja; otherwise the interaction is unity. This model

is very important in low-density parity-check (LDPC) coding theory.
The energy function of the restricted Boltzmann machine (RBM) is similar

to Eq. (1) but it involves two sets of spins:

E(σ1, . . . , σN ; s1, . . . , sN ′) = −
N∑
i=1

h0iσi −
N∑
i=1

N ′∑
µ=1

Jiµσisµ −
N ′∑
µ=1

w0
µsµ . (3)

Here ~σ ≡ (σ1, σ2, . . . , σN ) is a configuration of N visible spins σi ∈ ±1; ~s ≡
(s1, s2, . . . , sN ′) is a configuration of N ′ hidden spins sµ ∈ ±1; h0i and w0

µ are,
respectively, the external field (also called bias) on visible vertex i and hidden
vertex µ; and Jiµ is the coupling constant between the visible vertex i and
hidden vertex µ. The RBM is widely adopted in machine learning tasks.

The Amari-Hopfield model is a fundamental neural network model for asso-
ciative memory (Amari, 1977; Hopfield, 1982). Its energy function is

E(σ1, σ2, . . . , σN ) =

M∑
a=1

( 1

N

N∑
i=1

ξai σi

)p
, (4)
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where ~ξa ≡ (ξa1 , ξ
a
2 , . . . , ξ

a
N ) with a = 1, 2, . . . ,M denotes one of the M memo-

rized patterns. The energy coefficient p is often chosen to be p = 2 for theoretical
convenience, but a value of p ≥ 3 is desirable in terms of memory capacity.

1.2 The factor-graph representation

The energy functions of the preceding subsection have the following general form

E(~σ) =

N∑
i=1

Ei(σi) +

M∑
a=1

Ea(~σ∂a) . (5)

(Here and in all the following discussions we use letters i, j, k, . . . to denote a
generic vertex and use letters a, b, c, . . . to denote a generic interaction.) The
state vector ~σ = (σ1, . . . , σN ) denotes a generic configuration of the system,
σi could be discrete or be continuous-valued; the function Ei(σi) is the vertex
energy which depends only on the state of a single vertex i; and Ea(~σ∂a) is the
energy of interaction a which depends on the states of all the vertices in the set
∂a, with ~σ∂a ≡ {σi : i ∈ ∂a}. The equilibrium Boltzmann distribution of the
model (5) is

B(~σ) =
1

Z(β)
e−βE(~σ) , (6)

where β = 1/T is the inverse temperature and T is the temperature. The
normalization constant Z(β) is referred to as the partition function, and it is a
weighted sum over all the microscopic configurations

Z(β) =
∑
~σ

exp
(
−βE(~σ)

)
=
∑
~σ

N∏
i=1

ψi(σi)

M∏
a=1

ψa(~σ∂a) , (7)

where the vertex and interaction Boltzmann factors are, respectively,

ψi(σi) ≡ e−βEi(σi) , (8)

ψa(~σ∂a) ≡ e−βEa(~σ∂a) . (9)

We can represent the generic model (5) by a bipartite graph of N circles
(each of which corresponding to a vertex i of the system), and M squares (each
of which corresponding to an interaction a), see the illustration in Fig. 1. If a
vertex j participates in an interaction b (so j ∈ ∂b), a link (j, b) is then set up
between the corresponding circle and square. This bipartite graph is referred
to as a factor graph (Kschischang et al., 2001)), and it is denoted as G in the
following discussions.

1

3

2

1

3

4

2 5

Figure 1: Factor-graph representation for a simple probabilistic graphical
model, which has N = 5 circles (vertices) and M = 3 squares (interactions).
The vertex with index i = 5 does not participate in any interactions so it is
isolated. The vertex i = 1 participates in two interactions (whose indices are
a = 1 and a = 2) so it has two attached links. Figure copied from Zhou (2015).

The energy function (5), represented as a factor graph G, together with
the partition function (7) define a probabilistic graphical model. The biggest
challenge for probabilistic graphical models is to compute the partition function
Z(β) or equivalently the free energy F (β) defined by

F (β) ≡ − 1

β
lnZ(β) . (10)
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For the special case of the factor graph being a tree (or a forest) which is free of
any loops, the free energy can be computed with arbitrary precision by recur-
sively integrating the states of the leaf vertices. But the factor graphs of most
non-trivial many-body systems are extremely rich in loops. The existence of a
huge number of loops cause complicated correlations among the states of differ-
ent vertices. It is then very hard to compute the free energy with very high pre-
cision. We review in the following three sections some intuitive message-passing
methods to treat such loop-rich statistical physics systems approximately but
efficiently.

2 The cavity picture

The cavity picture was first developed in studying the Sherrington-Krikpatrick
spin glass model (Mézard et al., 1987) and was later employed in deriving the
first-step replica-symmetric breaking mean field theory of finite-connectivity
spin glasses (Mézard and Parisi, 2001). In this section we employ the cavity
picture to reach an intuitive formula for the free energy F (β).

2.1 Single-vertex marginal probability

Let us first focus on the behavior of a single vertex, say vertex i. This vertex
might be involved in some interactions and this set of interactions is denoted as
∂i (e.g., ∂i = {a, b, c} in Fig. 2a). The marginal distribution of vertex i, qi(σi),
is expressed as

qi(σi) =
1

Z(β)

∑
~σ\σi

e−βE(~σ)

∝ ψi(σi)
∑
~σ\σi

∏
a∈∂i

ψa(~σ∂a)

{∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b)

}
. (11)

Notice the terms inside the curly brakets of Eq. (11) do not depend on the state
σi of vertex i, they are contributed by the interactions and site energies of the
“cavity” factor graph, G\i, formed by the (N − 1) vertices except i (Fig. 2b).
Vertex i is only directly affected by the vertices at the “inner boundary” of
this cavity graph, and we denote this set of vertices as n(i), i.e., n(i) ≡ {j :
j ∈ ∂a\i; a ∈ ∂i}. For the particular example of Fig. 2 the vertex set n(i) =
{j, k, l,m, n, o, p}.

Let us denote a generic configuration of the cavity system G\i as ~σ\i (≡
{σj : j ∈ {1, 2, . . . , N}\i}). The partition function of this cavity graph is

Z\i(β) =
∑
~σ\i

∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b) . (12)

Then the Boltzmann distribution B\i(~σ\i) for the cavity system is

B\i(~σ\i) =
1

Z\i(β)

∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b) . (13)

The boundary vertices (those in the set n(i)) of the cavity graph G\i then has
the following joint distribution

P cavityn(i) (~σn(i)) =
∑

~σ\i\~σn(i)

B\i(~σ\i) . (14)

Then we see from Eq. (11) that

qi(σi) =
1

zi
ψi(σi)

∑
~σn(i)

P cavityn(i) (~σn(i))
∏
a∈∂i

ψa(~σa) , (15)
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Figure 2: Creating cavities in the factor graph G. (a) The local environment
of a vertex i which participates in three interactions (∂i = {a, b, c}). (b) After
vertex i and the attached interactions are deleted, the remaining part of the
factor graph is a cavity graph, G\i. The states of vertices j and k in G\i might
still be correlated due to the interactions not shown here; however due to the
absence of interaction a, these two vertices should be less correlated in G\i than
in the original system G. (c) The cavity graph G\a obtained by deleting a single
interaction a from the original factor graph.

where zi is the normalization constant defined by

zi =
∑
σi

ψi(σi)
∑
~σn(i)

P cavityn(i) (~σn(i))
∏
a∈∂i

ψa(~σ∂a) . (16)

Equation (15) has a clear physical meaning. The marginal probability of
σi depends on the probability of the states ~σn(i) of boundary vertices in the
cavity system G\i (before vertex i is added into the system), and also on the
extra Boltzmann weight

∏
a∈∂i ψa(~σ∂a) due to the interactions between i and

the cavity boundary, and finally on the additional Boltzmann weight ψi(σi)
coming from the site energy of vertex i.

It is helpful to emphasize again that, to exactly compute qi(σi) we need to
know the joint probability P cavityn(i) (~σn(i)) in the cavity system G\i instead of the

full system G.

2.2 Contribution of a vertex and its attached interactions

There is an important relation between the partition functions of the full system
G and the cavity system G\i:

Z(β) = zi(β)Z\i(β) . (17)

This is easy to check since Z(β) can be expressed as∑
σi

∑
~σ\i

ψi(σi)
∏
a∈∂i

ψa(~σ∂a)
∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b)∑
~σ\i

∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b)

∑
~σ\i

∏
j 6=i

ψj(σj)
∏
b/∈∂i

ψb(~σ∂b) .

(18)
In terms of free energy, we see from Eq. (17) that

F (β) = fi(β) + F\i(β) , (19)

where F\i(β) ≡ −(1/β) lnZ\i(β) and

fi(β) ≡ − 1

β
ln zi(β) (20)

= − 1

β
ln
[∑
σi

ψi(σi)
∑
~σn(i)

P cavityn(i) (~σn(i))
∏
a∈∂i

ψa(~σ∂a)
]
. (21)

5



The total free energy F (β) of the full system G is therefore decomposed into
two parts, the free energy F\i(β) of the cavity system G\i and the free energy
contribution fi(β) from vertex i and all its attached interactions. Notice that
F\i(β) is completely independent of vertex i and all the interactions in the set
∂i.

2.3 Contribution of a single interaction

We can also consider the free energy contribution of a single interaction a which
directly affect a set ∂a of vertices. This contribution can be obtained by compar-
ing the original factor graph G and the cavity graph (denoted as G\a) obtained
by deleting the interaction a (Fig. 2c). Similar to Eq. (17), we obtain

Z(β) = za(β)Z\a(β) , (22)

where Z\a is the partition function of the cavity sytem G\a. The factor za(β)
is expressed as

za(β) =
∑
~σ∂a

ψa(~σ∂a)P cavitya (~σ∂a) , (23)

with P cavitya (~σ∂a) being the joint state distribution of all vertices in the set ∂a
(the inner boundary vertices, see Fig. 2c) in the cavity system G\a.

In terms of free energy we therefore have

F (β) = fa(β) + F\a(β) . (24)

This relation is very similar to Eq. (19). It means that the total free energy
of the full system G is equal to the free energy F\a of the cavity system G\a
plus the additional free energy contribution fa(β) from the interaction a. The
explicit expression for fa(β) is

fa(β) ≡ − 1

β
ln za(β) = − 1

β
ln
[∑
~σ∂a

ψa(~σ∂a)P cavitya (~σ∂a)
]
. (25)

Notice again that F\a(β) is completely independent of the interaction a, simply
because this interaction is absent in the cavity system G\a (Fig. 2c).

2.4 An intuitive expression for the total free energy

Looking at Eq. (19), it is tempting for us to write the total free energy as

F (β) =
∑N
i=1 fi(β). But the free energy fi(β) contains not only the contri-

bution of vertex i but the contributions from all the attached interactions in
the set ∂i. Therefore there is over-counting of free energy contributions from
the interactions in

∑
i fi, which must be properly eliminated. For example, the

interaction a in Fig. 2a involves three vertices i, j, and k; its free energy con-
tribution fa(β) is considered three times, respectively, in the free energies fi,
fj , and fk; it is intuitively reasonable to subtract a value equal to 2fa from the
sum

∑
i fi.

With this analysis, we arrive at the following explicit formula for F (β):

F (β) ≈
N∑
i=1

fi(β)−
M∑
a=1

(
|∂a| − 1

)
fa(β) , (26)

where |∂a| means the size of the vertex set ∂a, i.e., the number of vertices
participating in interaction a. If the factor graph G is a tree or is a forest (a
collection of trees), then there is no loop in G. It can be proven that Eq. (26)
is exact for such a loop-free system (Zhou, 2015). Usually the factor graph
G contains a huge number of loops, and then the expression (26) is only an
approximation to the true free energy.
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To actually compute the free energy using Eq. (26), we need first to compute
the cavity joint probabilities P cavityn(i) (~σn(i)) and P cavitya (~σ∂a). These tasks are

not easy and we have to rely on approximate methods. We now describe two of
the simplest approximate (mean-field) solution protocols.

3 The Weiss mean field theory

Let us make two simplifying approximations: (1) the inner boundary vertices
in the cavity graphs G\a (see Fig. 2c) are all independent; and (2) each of these
boundary vertices i ∈ ∂a has the same marginal distribution qi(σi) in the cavity
system G\a as in the full system G. Then the joint distribution P cavitya (~σ∂a)
will become factorized, namely

P cavitya (~σ∂a) ≈
∏
j∈∂a

qj(σj) . (27)

Similarly, we assume that all the inner boundary vertices in the cavity graph
G\i are independent and their marginal distributions are the same as in the full
graph G. Then

P cavityn(i) (~σn(i)) ≈
∏
a∈∂i

∏
j∈∂a\i

qj(σj) . (28)

Inserting the approximate expression (28) into Eq. (15), we get the following
self-consistent equation for the single-vertex marginal probability qi(σ):

qi(σi) ∝ ψi(σi)
∏
a∈∂i

[ ∑
~σ∂a\σi

ψa(~σ∂a)
∏

j∈∂a\i

qj(σj)

]
. (29)

For example, in the case of an interaction a involving only two vertices i and j,
with energy Ea = −Jijσiσj , the corresponding term within the square brackets
of this equation is equal to

∑
σj
qj(σj)e

βJijσiσj ; in the case of a three-body inter-
action b involving vertices i, j, and k with Eb = −Jijkσiσjσk, the corresponding
term within the square brackets is equal to

∑
σj

∑
σk

qj(σj)qk(σk)eβJijkσiσjσk .

Equation (29) is the simplest message-passing equation for solving a proba-
bilistic graphical model. In the statistical physics literature it is widely referred
to as the Weiss mean field equation. One can try to iterate this equation on
all the vertices of the graph to reach a fixed-point solution. At a fixed point of
Eq. (29) is reached, the free energy contributions from all the vertices and all
the interactions can be evaluated as:

fi(β) = − 1

β
ln

[∑
σi

ψi(σi)
∏
a∈∂i

[ ∑
~σ∂a\σi

ψa(~σ∂a)
∏

j∈∂a\i

qj(σj)
]]
, (30)

fa(β) = − 1

β
ln

[∑
~σa

ψa(~σa)
∏
j∈∂a

qj(σj)

]
. (31)

Then the total free energy F (β) can be evaluated using Eq. (26).

4 The Bethe-Peierls mean field theory

An improvement over the Weiss mean field theory is to distinguish the cavity
graphs (e.g., G\i and G\a) and the full factor graph G. Notice that in the cavity
graph G\a of Fig. 2c the vertex j does not feel the interaction a. Let us denote
its marginal probability in G\a as qj→a(σa) to distinguish it with the marginal
probability qj(σj) in G. Under the factorization assumption Eq. (27) will then
be modified to be

P cavitya (~σ∂a) ≈
∏
j∈∂a

qj→a(σj) . (32)
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Similarly, Eq. (28) for the cavity graph G\i is changed to be

P cavityn(i) (~σn(i)) ≈
∏
a∈∂i

∏
j∈∂a\i

qj→a(σj) . (33)

Equations like (32) and (33) are commonly referred to as the Bethe-Peierls
approximation in the statistical physics literature. Under the Bethe-Peierls
approximation the marginal distribution of vertex i is then

qi(σi) ∝ ψi(σi)
∏
a∈∂i

[ ∑
~σ∂a\σi

ψa(~σ∂a)
∏

j∈∂a\i

qj→a(σj)

]
, (34)

and the expressions for the free energy contributions are

fi(β) = − 1

β
ln

[∑
σi

ψi(σi)
∏
a∈∂i

[ ∑
~σ∂a\σi

ψa(~σ∂a)
∏

j∈∂a\i

qj→a(σj)
]]
, (35)

fa(β) = − 1

β
ln

[∑
~σa

ψa(~σa)
∏
j∈∂a

qj→a(σj)

]
. (36)
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Figure 3: Message-passing by belief propagation on a factor graph G. In
this figure the message hi→a from vertex i to interaction a denotes the set
of parameters for the cavity distribution qi→a(σi); similarly the message ub→i
from interaction b to vertex i denotes the set of parameters for the function
pb→i(σi) defined in Eq. (38). Vertex i collects the incoming messages ub→i and
uc→i and produces an outgoing message hi→a to interaction a; while interaction
a collects the incoming messages from vertices j, k, and l and produces an
outgoing message ua→i to vertex i. Figure copied from Zhou (2015).

Similar to Eq. (34), we can write down an equation for the cavity probability
distribution qj→a(σj) as

qj→a(σj) =
1

zj→a
ψj(σj)

∏
b∈∂j\a

pb→j(σj) , (37)

where zj→a is a normalization constant and the function pb→j(σj) is defined by
the expression

pb→j(σj) ≡
∑

~σ∂b\σj

ψb(~σ∂b)
∏

k∈∂b\j

qk→b(σk) . (38)

Equations (37) and (38), taking together, are referred to as the belief-propagation
(BP) equation for the probabilistic graphical model. The functions qj→a(σj) and
pa→j(σj) can be understood as a pair of message functions on each link (j, a)
of the factor graph G between a vertex j and an interaction a, see Fig. 3.
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The BP equations (37) and (38) can be iterated on the factor graph G as a
message-passing process. After a fixed-point solution is reached, the free energy
F (β) is then obtained through Eq. (26) and the marginal probabilities of all
the vertices are obtained through Eq. (34). In practical applications the Bethe-
Peierls mean field theory often offers rather good predictions.

5 Application in optimization and inference

Here we describe two relatively simple applications of the belief-propagation
method, one on combinatorial optimization and the other on statistical infer-
ence.

5.1 The minimum vertex cover problem

The minimum vertex cover problem is a basic NP-hard combinatorial optimiza-
tion problem in computer science, it also has wide practical relevance (Weigt
and Hartmann, 2000). This problem is defined on a conventional graph of ver-
tices i, j, . . . and edges (i, j), (k, l), . . . between these vertices, see Fig. 4. Each
vertex i has two states si = 0 (empty) or si = 1 (occupied). The optimization
goal is to minimize the total number of occupied vertices. But for each edge
(i, j) between two vertices i and j, at least one of the incident vertices should
be occupied, namely

si + sj ≥ 1 ∀(i, j) . (39)

Figure 4: The minimum vertex cover problem defined on a graph with N = 6
vertices and M = 9 edges. Each edge in the graph requires that at least one of
the incident vertices should be occupied (shown as filled circles). The left panel
is a trivial fully occupied solution with maximum energy E = 6; the middle
panel is a non-optimal solution with energy E = 4; and the right panel is an
optimal solution with global minimum energy E = 3. Figure copied from Zhao
and Zhou (2014).

Notice that each edge constraint of Eq. (39) can be regarded as an interaction
with energy being infinity if si = sj = 0 and energy being zero if si = 1 or
sj = 1 or both. For such a two-body interaction system, since each edge already
represents an interaction, we do not need to work with a bipartite factor graph
but can work directly on the conventional graph of vertices and edges.

Under the Bethe-Peierls approximation of conditional independence among
all the neighboring vertices of a focal vertex i, we can easily write down the
following expression for q0i , the probability of vertex i being empty:

q0i =

∏
j∈n(i)

(
1− q0j→i

)
e−β +

∏
j∈n(i)

(
1− q0j→i

) , (40)

where n(i) denotes the set formed by all the nearest neighboring vertices of
vertex i, and q0j→i is the probability of vertex j being empty in the absence of
edge (i, j). To intuitively understand this expression, we notice that the term∏
j∈n(i)(1− q0j→i) is the probability of all the vertices in n(i) being occupied in

the absence of vertex i and all its attached edges (when i is added to the graph
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it can then be empty), while the term e−β is the penalty weight for vertex i
being occupied. The cavity probability q0j→i can be written down similarly:

q0j→i =

∏
k∈n(j)\i

(
1− q0k→j

)
e−β +

∏
k∈n(j)\i

(
1− q0k→j

) . (41)

The above equation is the BP equation for the minimum vertex cover problem.
The iteration of this equation on a given graph instance is simple to implement.

We can turn the BP iteration process into a heuristic algorithm to construct
close-to-minimum vertex cover solutions. In the belief propagation-guided deci-
mation (BPD) procedure, for instance, we can fix a tiny fraction of the vertices i
with highest estimated empty probabilities (q0i ≈ 1) to the empty state and then
simplify the graph; the BP iteration is then carried out on the reduced graph
for a number of rounds and the occupation probabilities for all the remaining
vertices are evaluated again using Eq. (40) to prepare for the next round of deci-
mation (more details were reviewed in Zhao and Zhou (2014)). We illustrate by
Fig. 5 the typical performance of such a BPD algorithm. Empirical results on
random graph instances and real-world complex networks both suggested that
the BPD algorithm is highly competent both in terms of solution quality and
in terms of search time.
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Figure 5: Comparing theoretical and algorithmic results for the random mini-
mum vertex cover problem. Square symbols and diamond symbols are, respec-
tively, the energy density (fraction of occupied vertices) of solutions obtained by
the BPD algorithm (with β = 10) and another more advanced message-passing
algorithm, on a single random graph instance of size N = 105 and mean vertex
degree c. The solid and dashed lines are the theoretical predictions obtained by
two mean field theories. Figure copied from Zhao and Zhou (2014).

Besides the vertex cover problem, the BPD algorithm and other message-
passing algorithms have been successfully tested in many other combinatorial
optimization problems and constraint satisfaction problems. They are applica-
ble not only to problems with local constraints such as those of Eq. (39) but
also to problems with global constraints (such as the cycle-constrained mini-
mum feedback vertex set problem (Zhou, 2013)). Research efforts in applying
message-passing methods to hard machine-learning tasks are now active and
fruitful.
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5.2 The inverse Ising problem

Consider generating many equilibrium spin configurations from the Ising model
(1) with energy function

E(σ1, σ2, . . . , σN ) = −
∑
(i,j)

Jijσiσj −
N∑
k=1

h0kσk . (42)

Let us denote the set of configurations as {~σ(a) : a = 1, 2, . . . ,M}. These
configurations are sampled independently from the equilibrium Boltzmann dis-
tribution of model (42) at a fixed inverse temperature β, see the illustration in
Fig. 6. The joint probability of getting these M configurations is

Pr
[
{~σ(a)}

]
=

M∏
a=1

B(~σ(a)) . (43)

0

1

2

3

4

5

6

7

8

9

Figure 6: The inverse Ising problem. In the example shown here for the
coarse-grained activity levels of neurons, the states of N = 10 vertices (neurons
or clusters of neurons) are recorded at fixed time intervals. Each row is for a
single vertex, and the horizon arrow shows the direction of time increase, while
the configuration of the N vertices at a single time point corresponds to one
column of the data matrix. At each time point, the state of vertex i is either
active (σi = +1, represented by a black bar) or inactive (σi = −1, no bar). The
task is to infer the couplings Jij and external fields h0k of model (42) from the
empirical data matrix. Figure copied from Zhou (2015).

If all the model parameters Jij and h0k are not revealed to the observer,
could they be reconstructed from the observed data only? The solution to this
problem is based on the belief or hypothesis that the M configurations have
the largest probability to be observed. The log-likelihood of observing these
configurations is expressed as

ln Pr
[
{~σ(a)}

]
≡

M∑
a=1

lnB(~σ(a)) = −
M∑
a=1

βE(~σ(a))−M ln
[∑
~σ

e−βE(~σ)
]
. (44)

We are looking for the parameters Jij and h0k} which maximize this log-likelihood
or equivalently, minimize the lost function

L
(
{Jij}, {h0k}

)
≡ − 1

M
ln Pr

[
{~σ(a)}

]
=

1

M

M∑
a=1

βE(~σ(a)) + ln
[∑
~σ

e−βE(σ)
]
.

(45)
The first derivative of L with respect to Jij is

∂L
∂Jij

= −β 1

M

M∑
a=1

σ
(a)
i σ

(a)
j + β

∑
~σ σiσje

−βE(~σ)∑
~σ e
−βE(~σ)

(46)

= −β
[〈
σiσj

〉
data
−
〈
σiσj

〉
model

]
. (47)
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Therefore if the correlation
〈
σiσj

〉
data

between vertices i and j in the empirical

data is larger than the correlation
〈
σiσj

〉
model

predicted by the model, then
the coupling Jij should be increased; otherwise Jij should be decreased. As a
simple learning rule, we can make a small change δJij(t) to the coupling Jij at
time t as

δJij(t) = λ
[〈
σiσj

〉
data
−
〈
σiσj

〉
model

]
, (48)

where λ is a small positive-valued learning parameter. Similarly we can derive
a learning rule for the external field h0i as

δh0i (t) = λ
[〈
σi
〉
data
−
〈
σi
〉
model

]
, (49)

where
〈
σi
〉
data

is the mean value of σi among the M observed configurations,

and
〈
σi
〉
model

is the predicted value of σi from the model (42). The values of〈
σiσj

〉
and

〈
σi
〉

are straightforward to compute from the empirical data. The
real challenge is to compute the predicted mean values of σiσj and σi accurately
and efficiently. There are of course many different ways for doing this. Here we
describe the message-passing inference method.

For binary spin σi ∈ ±1, the marginal distribution of vertex i can be param-
eterized as qi(σi) = eβhiσi/[2 cosh(βhi)], where hi is simply the total (magnetic)
field on this vertex. Similarly, qi→j(σi) = eβhi→jσi/[2 cosh(βhi→j)] with hi→j
being the cavity field on vertex i. Based on the Bethe-Peierls approximation,
we have

hi = h0i +
∑
j 6=i

uj→i , (50)

hi→j = h0i +
∑
k 6=i,j

uk→i = hi − uj→i . (51)

Here uj→i is the field contribution from vertex j:

uj→i =
1

β
atanh

[
tanh(βhj→i) tanh(βJij)

]
. (52)

Because each vertex interacts with every other vertex in the system, it may be
safe to expect that the cavity field hj→i differs only very slightly from hj . Under
this approximation we obtain that

tanh(βhj→i) ≈ tanh(βhj)−
(
1− tanh2(βhj)

)
atanh

[
tanh(βhi) tanh(βJij)

]
,

(53)
and then

βuj→i ≈ atanh
[
tanh(βhj) tanh(βJij)

]
−

tanh(βJij)
[
1− tanh2(βhj)

]
1− tanh2(βhj) tanh2(βJij)

atanh
[
tanh(βhi) tanh(βJij)

]
. (54)

Therefore we get from Eq. (50) that

hi ≈ h0i +
∑
j 6=i

1

β
atanh

[
tanh(βhj) tanh(βJij)

]
(55)

−
∑
j 6=i

tanh(βJij)
[
1− tanh2(βhj)

]
β
[
1− tanh2(βhj) tanh2(βJij)

]atanh
[
tanh(βhi) tanh(βJij)

]
. (56)

which does not involves the cavity messages and is more convenient for numer-
ical computations. The third term of Eq. (56) is called an Onsager retraction
term. If we further assume that βJij ≈ 0, the above expression can be further
simplified as

hi ≈ h0i +
∑
j 6=i

Jij

[
tanh(βhj)− βJij

(
1− tanh2(βhj)

)
tanh(βhi)

]
. (57)
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Equation (57) was first derived by Thouless et al. (1977) and is commonly
referred to as the TAP equation. After a fixed-point solution of all the N fields
hi is reached by iterating Eq. (56) or Eq. (57), the predicted mean value of σi
is then simply

〈σi〉model = tanh
(
βhi
)
. (58)

To compute the mean value of σiσj , we notice that the joint distribution of
σi and σj under the Bethe-Peierls approximation is

Pr(σi, σj) ∝ exp
(
βhi→jσi + βJijσiσj + βhj→iσj

)
. (59)

It is then almost straightforward to derive the following mean-field equation for
any i 6= j

〈σiσj〉model =
tanh(βJij) + tanh(βhi) tanh(βhj)

1 + tanh(βJij) tanh(βhi) tanh(βhj)
×
{

1 + o(1)
}
. (60)

(The correction term o(1) in this expression comes from approximating hi→j by
hi and hj→i by hj .)

Figure 7 shows the performance of this simple inference algorithm on a prob-
lem instance of N = 64 vertices and M = 106 samples. We find the inference
accuracy is satisfactory for configurations sampled at low values of the inverse
temperature β, but the performance deteriorates with β. The basic reason
behind this phenomenon is the build up of correlations within each sampled
configurations. As the temperature is lowered (and β increases), the correla-
tions among the states of the vertices become more and more stronger; but these
correlations are largely ignored in the simple BP inference method.
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Figure 7: Reconstructing the Sherrington-Kirkpatrick model. A total number
of M = 106 equilibrium configurations were generated by Markov-Chain Monte-
Carlo at fixed inverse temperature β for a single instance of the SK model with
N = 64 vertices. The external fields are set to h0k = 0 in the model, and each

coupling constant J
(true)
ij (with 1 ≤ i < j ≤ N) of the model is independently

sampled from the Gaussian distribution with mean zero and variance 1/N . The

reconstructed values J
(inference)
ij of the coupling constants are compared with

the corresponding true values. (a) Data sampled at β = 0.2; (b) β = 0.5; (c)
β = 1.0. Simulation data courtesy of Mr. Chen-Yi Gao (2017).

There are various ways to improve the inference performance, see recent
reviews by Cocco et al. (2017) and Nguyen et al. (2017). The inverse Ising
problem has important applications in neuron firing data analysis (Schneidman
et al., 2006; Roudi et al., 2009) and in protein structure prediction (Weigt et al.,
2009). This problem is also referred to as the direct contact analysis in the
protein folding research community (Cocco et al., 2017; Nguyen et al., 2017).

Machine learning algorithms are to a great extent (advanced) inference algo-
rithms. Learning rules similar to Eqs. (48) and (49) are commonly encountered
in variously machine learning tasks (e.g., the restricted Boltzmann machine).
Message-passing methods are indeed very helpful for inference problem (Zde-
borová and Krzakala, 2016).
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6 Beyond the elementary steps

We introduced some of the basic concepts and methods for solving probabilistic
graphical models. Many important issues were not addressed here. For readers
interested in exploring more, we list here some of these more advanced topics
on probabilistic graphical models.

1. Ergodicity breaking. At low temperature (and high inverse temperature
β) the relevant configuration space of the graphical model (5) might break into
many widely separated sub-spaces. More advanced mean field theories have
been developed to tackle this difficult situation (Mézard and Parisi, 2001).

2. Loop-expansion framework. Mean field theories and message-passing
equations can also be derived by expanding the partition function (7) into a
loop series and keeping on the leading term (Zhou, 2015).

3. Beyond the Bethe-Peierls approximation. We can adopt the Kikuchi
cluster variational framework to include more local correlations among the ver-
tices of a given model and to develop generalized belief-propagation equations
(Yedidia et al., 2005; Pelizzola, 2005).
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