Density Functional Theory: Models and numerical methods

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Beijing, June 7-10, 2017

First-principle molecular simulation is used by thousands of physicists, chemists, biologists, materials scientists, nanoscientists on a daily basis:

- over 20,000 papers a year and growing;
- about 20% of the resources available in scientific computing centers;
- Kohn and Pople were awarded the 1998 Nobel prize in Chemistry for their contributions to electronic structure calculation methods (Density Functional Theory and wavefunction methods).
- Karplus, Levitt and Warshel were awarded the 2013 Nobel prize in Chemistry for their contributions to multiscale modeling of (bio)molecules.

Most of these models are completely, or largely, unexplored from mathematical and numerical points of view.

Number of hits (June 2017)

	Web of Science	MathSciNet	\% in MathSciNet
'Density Functional Theory"'	$\mathbf{1 3 6 , 8 4 0}$	$\mathbf{3 4 2}$	$\mathbf{0 . 2} \%$
'fluid dynamics"	$\mathbf{5 0 , 9 8 9}$	$\mathbf{1 0 , 7 5 2}$	$\mathbf{2 1 \%}$
'Navier-Stokes"	$\mathbf{4 8 , 4 1 2}$	$\mathbf{2 0 , 4 4 2}$	$\mathbf{4 2} \%$
'Boltzmann equation"'	$\mathbf{1 2 , 8 4 2}$	$\mathbf{4 , 8 2 9}$	$\mathbf{3 7 \%}$
'Maxwell equations"	$\mathbf{6 , 7 1 4}$	$\mathbf{4 , 0 0 4}$	$\mathbf{5 9 \%}$

Examples of application

Chemistry

Molecular biology

Materials science

Nanotechnology

Periodic Table of Elements

	1	2	3	4	5		6	7		8		9		10		11	12		13	14	15	16	17	18
1	1 H Hydrogen 1.00794	Atomic \# Symbd Name Atomic Mass	C	Solid						Metal						Nonme	tals							$\begin{aligned} & 2 \\ & \mathrm{He} \\ & \text { Hellum } \\ & 4.002802 \end{aligned}$
2	$\begin{aligned} & 3 \\ & \mathbf{L i} \\ & \substack{\text { Lithium } \\ 0.941} \end{aligned}$	4 $\frac{2}{2}$ Be Beryllium 9.012182		Liquid Gas						anthan	oids			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \\ & \underline{0} \end{aligned}$			$\begin{aligned} & \text { Zo } \\ & \frac{0}{0} \\ & \frac{\square}{0} \\ & 0 \end{aligned}$		B Boron 10.811	$\begin{aligned} & 6 \\ & \text { Carton } \\ & \text { Con } \\ & \text { 12.0107 } \end{aligned}$	$\begin{aligned} & \hline 7 \\ & \mathrm{~N} \\ & \text { Nitrogen } \\ & \text { i4.0087 } \end{aligned}$		$\begin{aligned} & 9 \\ & \mathrm{~F} \\ & \text { Fluorine } \\ & 18.984032 \end{aligned}$	
3	11 Na Sodium 22.98976928		Rf	Unknown			$\frac{\stackrel{\rightharpoonup}{2}}{\omega}$	$\frac{\stackrel{1}{\omega}}{\omega}$		ctinoid				$\frac{\square}{0}$			$\begin{aligned} & \text { W } \\ & \text { © } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} 13 \\ \mathbf{A l} \end{array}$ Aluminium 28.9815396 26.9815386	14	$\begin{aligned} & 15 \\ & \mathbf{P} \\ & \begin{array}{l} \text { Phosphorus } \\ 30.973762 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~S} \\ & \text { Sulfur } \\ & 322.055 \end{aligned}$	$\underset{\substack{17 \\ \text { Chlarine } \\ 35.453}}{\text { Cl }}$	$\begin{array}{\|ll} \hline 18 & \frac{2}{8} \\ \mathrm{Ar} & 8 \\ \text { Argon } \\ \text { A9.948 } \end{array}$
4	$\begin{aligned} & 19 \\ & \mathbf{K} \\ & \begin{array}{l} \text { Potassium } \\ 39.0983 \end{array} \end{aligned}$	$\begin{array}{ll} 20 & \frac{2}{8} \\ \mathbf{C a} \\ \begin{array}{l} \text { Calcium } \\ 40.78 \\ 4 \end{array} \\ \hline \end{array}$		$\begin{array}{lr} 22 & \begin{array}{c} \frac{2}{8} \\ { }_{10}^{20} \\ \hline \text { Titanum } \\ 47.887 \end{array} \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & \mathbf{V} \\ & \text { Vanadium } \\ & 50.9415 \end{aligned}$	$\begin{aligned} & \frac{2}{4} \\ & \frac{1}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 24 \\ & \text { Crromium } \\ & \text { Chrom } \\ & 51.9581 \end{aligned}$	$\begin{array}{\|l\|l} \hline 25 \\ \text { Mn } \\ \hline \begin{array}{l} \text { Marganese } \\ 54.938045 \\ \hline \end{array} \\ \hline \end{array}$		$\begin{array}{\|l} 26 \\ \mathrm{Fe} \\ \substack{\text { tron } \\ 55.845} \end{array}$		$\begin{aligned} & 27 \\ & \text { Co } \\ & \text { Cobalt } \\ & 58.933195 \end{aligned}$		$\begin{aligned} & 28 \\ & \mathbf{N i} \\ & \begin{array}{c} \text { Nickel } \\ 58.6934 \end{array} \end{aligned}$		$\begin{aligned} & 29 \\ & \mathbf{C u} \\ & \text { Copper } \\ & 63.548 \end{aligned}$			$\begin{array}{\|l} 31 \\ \mathbf{G a} \\ \text { Gallum } \\ \text { ci.723 } \end{array}$	32	33 As Arsenio 74.92160		$\begin{array}{\|l\|} \hline 35 \\ \mathrm{Br} \\ \substack{\text { Bromine } \\ 79.904} \\ \hline \end{array}$	$\begin{array}{\|lr} \hline 36 & \stackrel{2}{8} \\ \mathbf{K r} & \begin{array}{l} 180 \\ \text { Krypton } \\ \text { Kis } \\ 833.788 \end{array} \\ \hline \end{array}$
5	$\begin{aligned} & 37 \\ & \mathbf{R b} \\ & \begin{array}{l} \text { Rubidium } \\ 8554778 \end{array} \end{aligned}$				$\begin{aligned} & 41 \\ & \mathbf{N b} \\ & \text { Niobum } \\ & \text { N2.50638 } \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{1}{12} \\ & 11_{1} \end{aligned}$	42 Mo Molybdenum 95.96		,	44 Ru Rutheniu 101.07		$\begin{aligned} & 45 \\ & \mathbf{R h} \\ & \begin{array}{l} \text { Rhodum } \\ 102.90550 \end{array} \end{aligned}$	\qquad	$\begin{aligned} & 46 \\ & \text { Pd } \\ & \text { Palladium } \\ & 108.42 \end{aligned}$		$\begin{aligned} & 47 \\ & \mathbf{A g} \\ & \text { sive } \\ & \text { siver } \\ & \hline 18262 \end{aligned}$		4	$\begin{aligned} & 49 \\ & \text { In } \\ & \text { Indium } \\ & 114.818 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { Sn } \\ & T_{\text {Tn }} \\ & 118.710 \end{aligned}$	51 Sb Antimony 121.760		$\begin{array}{\|l} 53 \\ \text { l } \\ \text { laine } \\ \text { i20.90447 } \end{array}$	
6	55 Cs Caesium 132.9054519	56	57-71	$\begin{aligned} & 72 \\ & \text { Hf } \\ & \begin{array}{l} \text { Hafnium } \\ 178.49 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} 73 \\ \text { Ta } \\ \text { Tantalam } \\ \text { 180.94788 } \end{array}$		$\begin{aligned} & 74 \\ & \mathbf{W} \\ & \begin{array}{l} \text { Tungsten } \\ 183.84 \end{array} \end{aligned}$		$\begin{aligned} & \frac{2}{2} \\ & \frac{13}{3} \\ & \frac{12}{3} \\ & \frac{1}{2} \end{aligned}$	76 Os Osmium 190.23		$\begin{aligned} & 77 \\ & \mathbf{l r} \\ & \begin{array}{l} \text { lidum } \\ 1922.217 \end{array} \end{aligned}$		$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$ Platinum 195.084		79 Au Gold 198.988589			81	$\begin{aligned} & 82 \\ & \mathbf{P b} \\ & \text { Lead } \\ & 207.2 \end{aligned}$	83 Bi Bismuth 208.98040		$\begin{array}{\|l} 85 \\ \text { At } \\ \text { Astatine } \\ \text { (209.9871) } \end{array}$	
7	$\begin{aligned} & 87 \\ & \text { Fr } \\ & \text { Francium } \\ & (223) \end{aligned}$	88 Ra 2 Rasium Rat (226)	89-103		$\begin{array}{\|l} 105 \\ \mathrm{Db} \\ \text { Dubrium } \\ (282) \end{array}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{10}{10} \\ & \frac{1}{212} \\ & \frac{11}{11} \\ & 2 \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \\ & \text { Seaboryium } \\ & (288) \end{aligned}$			$\begin{array}{\|l} 108 \\ \text { Hs } \\ \text { Hsssium } \\ \text { (277) } \end{array}$	$\begin{aligned} & \frac{2}{8} \\ & \frac{18}{18} \\ & \frac{3}{2} \\ & \frac{12}{12} \\ & 2 \end{aligned}$	$\begin{aligned} & 109 \\ & \text { Mt } \\ & \text { Meitnerium } \\ & \text { M288) } \end{aligned}$		$\begin{aligned} & 110 \\ & \text { Ds } \\ & \text { Damstatiom } \\ & (271) \end{aligned}$		$\begin{aligned} & 111 \\ & \text { Rg } \\ & \text { Rexityerim } \\ & (222) \end{aligned}$	$\begin{aligned} & 112 \\ & \text { Uub } \\ & \begin{array}{l} \text { Ununbium } \\ (285) \end{array} \end{aligned}$	$\begin{aligned} & 1.18 \\ & \text { in } \end{aligned}$	113 Uut Ununtrium (284)	114 Uuq Ununquadin (289)	115 Uup Unupentium (288)		117 Uus Unrsediom	

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

Ptable
. com

57 La Lanthanum 138.90547		$\begin{aligned} & 58 \\ & \mathrm{Ce} \\ & \text { Cenium } \\ & 140.118 \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{18}{18} \\ & \frac{1}{2} \\ & 2 \end{aligned}$		60 Nd Neodymium 144.242		$\begin{aligned} & 61 \\ & \text { Pm } \\ & \begin{array}{l} \text { Promethium } \\ (145) \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 62 \\ & \mathrm{Sm} \\ & \begin{array}{l} \text { Samarium } \\ 150.36 \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \frac{2}{2} \\ & \frac{15}{24} \\ & \frac{2}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & \text { Eu } \\ & \text { Europim } \\ & \text { I51.se4 } \end{aligned}$	$\begin{aligned} & \text { a } \\ & \frac{2}{181} \\ & \frac{18}{3} \\ & \frac{1}{2} \end{aligned}$	64 Gd Gadolinium 157.25 157.2		$\begin{aligned} & 65 \\ & \text { Tb } \\ & \begin{array}{l} \text { Terbium } \\ \text { 158.92535 } \end{array} \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & 15 \\ & 15 \\ & \frac{15}{3} \\ & \frac{1}{2} \end{aligned}$	66 Dy Dysprosium 162.500 162.500		67 Ho Holmium 164.93032		$\begin{array}{\|l\|} \hline 68 \\ \text { Er } \\ \text { Erium } \\ \text { Eri.259 } \end{array}$		$\begin{aligned} & 69 \\ & \text { Tm } \\ & \text { Thulium } \\ & \text { 188.93421 } \end{aligned}$	$\begin{array}{r} 2 \\ \begin{array}{l} \frac{2}{8} \\ 15 \\ 3 \\ \frac{1}{2} \\ 2 \end{array} \end{array}$	70 Yb Ytterbium 173.054	$\begin{aligned} & \frac{2}{2} \\ & \frac{1}{25} \\ & \frac{23}{2} \\ & 2 \\ & 2 \end{aligned}$	
89 Ac Actinium (227)		$\begin{aligned} & 90 \\ & \text { Th } \\ & \begin{array}{l} \text { Thorium } \\ \text { 232.03008 } \end{array} \end{aligned}$		91 Pa Protactinium 231.03588	$\begin{aligned} & 92 \\ & \mathbf{U} \\ & \begin{array}{l} \text { Uraium } \\ 238.02891 \end{array} \end{aligned}$		$\begin{aligned} & 93 \\ & \text { Np } \\ & \begin{array}{l} \text { Nepturium } \\ \text { (237) } \end{array} \end{aligned}$	$\begin{aligned} & \frac{2}{2} \\ & \frac{1}{12} \\ & \frac{12}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathbf{P u} \\ & \begin{array}{l} \text { Plutonium } \\ (244) \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 95 \\ & \mathbf{A m} \\ & \text { Americium } \\ & (243) \end{aligned}$		96 Cm Curium (247)		97 Bk Berkelium (247)	$\begin{aligned} & \frac{2}{8} \\ & \frac{18}{18} \\ & \frac{3}{2} \\ & \frac{2}{3} \end{aligned}$	98 Cf Californium (251)	$\begin{aligned} & \frac{2}{8} \\ & \frac{15}{3} \\ & \frac{32}{2} \\ & \frac{8}{8} \\ & 2 \end{aligned}$	99 Es Einsteinium (252)		$\underset{\substack{\text { Fermium } \\ \text { (257) }}}{100}$		$\begin{aligned} & 101 \\ & \text { Md } \\ & \text { Mendevim } \\ & (258) \end{aligned}$	$\begin{aligned} & \frac{2}{8} \\ & \frac{1}{6} \\ & \frac{15}{31} \\ & \frac{1}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & \begin{array}{l} \text { Nobelium } \\ (259) \end{array} \end{aligned}$		

Internal structure of an atom

In the absence of nuclear reactions, nuclei can be considered as 'elementary particles'".

Key observation: a molecular system is nothing but a collection of M atomic nuclei and N electrons in Coulomb interaction.

Such a system can be described by the laws of quantum mechanics (many-body Schrödinger equation) and statistical physics.

Example of the water molecule ($\mathrm{H}_{2} \mathrm{O}$): $M=3$ atomic nuclei (1 oxygen + 2 hydrogens) and $N=10$ electrons.

The only parameters of these models are (atomic units)

- a few fundamental constants of physics

$$
\begin{array}{ll}
\hbar=1, \quad m_{e}=1, \quad e=1, \quad \varepsilon_{0}=(4 \pi)^{-1} \\
c \simeq 137.0359996287515 \ldots, \quad k_{\mathrm{B}}=3.16681537 \ldots \times 10^{-6}
\end{array}
$$

- the charges and masses of the nuclei

$$
z_{\mathrm{H}}=1, \quad z_{\mathrm{O}}=8, \quad m_{\mathrm{H}}=1836.152701 \ldots, \quad m_{16 \mathrm{O}}=29156.944123 \ldots
$$

In principle, it is therefore possible to compute all the properties of any molecular system from its chemical formula.

The mathematical analysis of first-principle simulation models and their numerical simulation are challenging tasks: depending on the model and on the system, various fields of pure and applied mathematics are involved!

Partial differential equations
Variational methods
Spectral theory Nonlinear PDEs Multiscale problems Integral equations

Mathematical physics
Quantum mechanics
Statistical physics
Random media

First-principle molecular simulation

Numerical analysis and scientific computing

Nonlinear eigenvalue problems High-dimensional PDEs Numerical linear algebra High-performance computing

Probability and statistics
Monte Carlo methods
Large deviations
Ergodic theory
Big data

Control theory and optimization
Constrained optimization
Global optimization
Controlability
"Pure mathematics" Optimal control

Group theory
Dynamical systems
Differential geometry (Berry curvature, ...)
Non-commutative geometry (C^{*}-algebras, ...)
Algebraic topology (Chern classes, ...)

Part I: modeling

1. The quantum many-body problem
2. First-principle molecular simulation
3. Density Functional Theory and Kohn-Sham models
4. Infinite systems

Part II: numerical methods
5. Standard discretization methods and algorithms
6. Advanced methods and current research

1 - The quantum many-body problem

First principles of (non-relativistic) quantum mechanics
An isolated quantum system is described by

- a state space \mathcal{H} (a complex Hilbert space);
- a Hamiltonian H (a self-adjoint operator on \mathcal{H});
- other observables (s.a. op. on \mathcal{H}) allowing to connect theory and exper.

The state of the system at time t is completely characterized by a wavefunction $\Psi(t) \in \mathcal{H}$ such that $\|\Psi(t)\|_{\mathcal{H}}=1$.

Time-dependent Schrödinger equation

$$
i \hbar \frac{d \Psi}{d t}(t)=H \Psi(t)
$$

Time-dependent Schrödinger equation
The steady states are of the form $\Psi(t)=f(t) \psi, f(t) \in \mathbb{C}, \psi \in \mathcal{H}$

$$
H \psi=E \psi, \quad E \in \mathbb{R}, \quad\|\psi\|_{\mathcal{H}}=1, \quad f(t)=e^{-i E t / \hbar}
$$

Quantum mechanics for one-particle systems
Consider a particle of mass m subjected to an external potential $V_{\text {ext }}$:

- state space: $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$ (spin is omitted for simplicity);
- Hamiltonian: $H=-\frac{\hbar^{2}}{2 m} \Delta+V_{\text {ext }}$ (self-adjoint operator on \mathcal{H}).
$|\Psi(t, \mathbf{r})|^{2}$: probability density of observing the particle at point \mathbf{r} at time t

$$
\int_{\mathbb{R}^{3}}|\Psi(t, \mathbf{r})|^{2} d \mathbf{r}=\|\Psi(t)\|_{\mathcal{H}}^{2}=1
$$

Time-dependent Schrödinger equation

$$
i \hbar \frac{d \Psi}{d t}(t)=H \Psi(t) \quad \longrightarrow \quad i \hbar \frac{\partial \Psi}{\partial t}(t, \mathbf{r})=-\frac{\hbar^{2}}{2 m} \Delta \Psi(t, \mathbf{r})+V_{\mathrm{ext}}(\mathbf{r}) \Psi(t, \mathbf{r})
$$

Time-independent Schrödinger equation

$$
H \psi=E \psi \quad \longrightarrow \quad-\frac{\hbar^{2}}{2 m} \Delta \psi(\mathbf{r})+V_{\mathrm{ext}}(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

Typical spectrum of the Hamiltonian $H=-\frac{\hbar^{2}}{2 m} \Delta+V_{e x t}$ for $\mathbf{1} \mathbf{e}^{-}$systems
Ground state

Excited states
Ex.: $V_{\mathrm{ext}}(\mathbf{r})=-\frac{e^{2}}{4 \pi \varepsilon_{0}|\mathbf{r}|}(\mathbf{H y d r o g e n}$ atom $), \sigma(H)=\left\{-\frac{E_{\mathrm{Ryd}}}{n^{2}}\right\}_{n \in \mathbb{N}^{*}} \cup[0,+\infty[$.

Physical meaning of the discrete energy levels

Example of the hydrogen atom

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m_{e}} \Delta \Psi(x)-\frac{e^{2}}{4 \pi \varepsilon_{0}|x|} \Psi(x)=E \Psi(x) \\
E_{n}=-\frac{E_{\mathrm{Ryd}}}{n^{2}}, \quad n \in \mathbb{N}^{*}, \quad E_{\mathrm{Ryd}}=\frac{m_{e}}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar}\right)^{2}, \quad \lambda_{m \rightarrow n}=\frac{8 \pi \hbar c}{E_{\mathrm{Ryd}}}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{-1}
\end{gathered}
$$

Balmer series (nm): $\lambda_{6 \rightarrow 2}=410.07, \lambda_{5 \rightarrow 2}=433.94, \lambda_{4 \rightarrow 2}=486.01, \lambda_{3 \rightarrow 2}=656.11$

$$
\lambda_{6 \rightarrow 2}^{\exp }=410.17, \lambda_{5 \rightarrow 2}^{\exp }=434.05, \lambda_{4 \rightarrow 2}^{\exp }=486.13, \lambda_{3 \rightarrow 2}^{\exp }=656.28
$$

On the physical meaning of point and continuous spectra
Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).
Let H be a locally compact self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$.
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]
Let $\mathcal{H}_{p}=\overline{\text { Span }\{\text { eigenvectors of } H\}}$ and $\mathcal{H}_{c}=\mathcal{H}_{p}^{\perp}$.
[Ex.: for the Hamiltonian of the hydrogen $\operatorname{atom}, \operatorname{dim}\left(\mathcal{H}_{p}\right)=\operatorname{dim}\left(\mathcal{H}_{c}\right)=\infty$.]
Let $\chi_{B_{R}}$ be the characteristic function of the ball $B_{R}=\left\{\mathbf{r} \in \mathbb{R}^{d}| | \mathbf{r} \mid<R\right\}$.
Then

$$
\begin{aligned}
& \left(\phi_{0} \in \mathcal{H}_{p}\right) \Leftrightarrow \forall \varepsilon>0, \exists R>0, \forall t \geq 0,\left\|\left(1-\chi_{B_{R}}\right) e^{-i t H / \hbar} \phi_{0}\right\|_{L^{2}}^{2} \leq \varepsilon \\
& \left(\phi_{0} \in \mathcal{H}_{c}\right) \Leftrightarrow \forall R>0, \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left\|\chi_{B_{R}} e^{-i t H / \hbar} \phi_{0}\right\|_{L^{2}}^{2} d t=0
\end{aligned}
$$

On the physical meaning of point and continuous spectra
Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).
Let H be a locally compact self-adjoint operator on $L^{2}\left(\mathbb{R}^{d}\right)$.
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]
Let $\mathcal{H}_{p}=\overline{\text { Span }\{\text { eigenvectors of } H\}}$ and $\mathcal{H}_{c}=\mathcal{H}_{p}^{\perp}$.
[Ex.: for the Hamiltonian of the hydrogen atom, $\operatorname{dim}\left(\mathcal{H}_{p}\right)=\operatorname{dim}\left(\mathcal{H}_{c}\right)=\infty$.]
Let $\chi_{B_{R}}$ be the characteristic function of the ball $B_{R}=\left\{\mathbf{r} \in \mathbb{R}^{d}| | \mathbf{r} \mid<R\right\}$.
Then

$$
\begin{aligned}
& \left(\phi_{0} \in \mathcal{H}_{p}\right) \Leftrightarrow \forall \varepsilon>0, \exists R>0, \forall t \geq 0,\left\|\left(1-\chi_{B_{R}}\right) e^{-i t H / \hbar} \phi_{0}\right\|_{L^{2}}^{2} \leq \varepsilon \\
& \left(\phi_{0} \in \mathcal{H}_{c}\right) \Leftrightarrow \forall R>0, \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T}\left\|\chi_{B_{R}} e^{-i t H / \hbar} \phi_{0}\right\|_{L^{2}}^{2} d t=0
\end{aligned}
$$

$\mathcal{H}_{\mathrm{p}}:$ set of bound states, $\quad \mathcal{H}_{\mathrm{c}}:$ set of scattering states.

Quantum mechanics for two-particle systems
State space: $\mathcal{H} \subset L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \otimes L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \equiv L^{2}\left(\mathbb{R}^{6}, \mathbb{C}\right)$
$\left|\Psi\left(t, \mathbf{r}_{1}, \mathbf{r}_{2}\right)\right|^{2}$: probability density of observing at time t the particle 1 at \mathbf{r}_{1} and the particle 2 at \mathbf{r}_{2}

Symmetry constraints

- two different particles: $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \otimes L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$
- two identical bosons (e.g. two \mathbf{C}^{12} nuclei): $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \otimes_{\mathrm{S}} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$

$$
\Psi\left(t, \mathbf{r}_{2}, \mathbf{r}_{1}\right)=\Psi\left(t, \mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- two identical fermions (e.g. two electrons): $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \wedge L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$

$$
\Psi\left(t, \mathbf{r}_{2}, \mathbf{r}_{1}\right)=-\Psi\left(t, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \quad \text { (Pauli principle) }
$$

density $\quad \rho(t, \mathbf{r})=\int_{\mathbb{R}^{3}}\left|\Psi\left(t, \mathbf{r}, \mathbf{r}_{2}\right)\right|^{2} d \mathbf{r}_{2}+\int_{\mathbb{R}^{3}}\left|\Psi\left(t, \mathbf{r}_{1}, \mathbf{r}\right)\right|^{2} d \mathbf{r}_{1}=2 \int_{\mathbb{R}^{3}}\left|\Psi\left(t, \mathbf{r}, \mathbf{r}_{2}\right)\right|^{2} d \mathbf{r}_{2}$

Quantum mechanics for N-particle systems
Consider N particles of masses m_{1}, \cdots, m_{N} subjected to an external potential $V_{\text {ext }}(\mathbf{r})$ and pair-interaction potentials $W_{i j}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)$.

- State space: $\mathcal{H} \subset L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \otimes \cdots \otimes L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right) \equiv L^{2}\left(\mathbb{R}^{3 N}, \mathbb{C}\right)$
$\left|\Psi\left(t, \mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)\right|^{2}$: probability density of observing at time t the particle 1 at \mathbf{r}_{1}, the particle 2 at \mathbf{r}_{2}, \ldots
- Time-independent Schrödinger equation

$$
\left(-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m_{i}} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} W_{i j}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)\right) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)
$$

$\longrightarrow \quad 3 \mathrm{~N}$-dimensional linear ellipic eigenvalue problem

Ground state of N non-interacting identical particles of mass m subjected to an external potential $V_{\text {ext }}(\mathbf{r})$

$$
\begin{aligned}
& H=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)=\sum_{i=1}^{N} \mathfrak{h}_{\mathbf{r}_{i}} \\
& \left\{\begin{array}{l}
\mathfrak{h} \phi_{i}=\varepsilon_{i} \phi_{i}, \quad \varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{N} \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} \\
\mathfrak{h}=-\frac{\hbar^{2}}{2 m} \Delta+V_{\mathrm{ext}}
\end{array}\right.
\end{aligned}
$$

- Bosonic ground state: $\psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=\prod_{i=1}^{N} \phi_{1}\left(\mathbf{r}_{i}\right), \quad \rho(\mathbf{r})=N\left|\phi_{1}(\mathbf{r})\right|^{2}$
- Fermionic gr. st.: $\psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}} \operatorname{det}\left(\phi_{i}\left(\mathbf{r}_{j}\right)\right), \quad \rho(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}$

2 - First-principle molecular simulation

Chemistry

Molecular biology

Materials science

Key observation

- A molecule is a set of M nuclei and N electrons.
- The state space $\mathcal{H} \subset L^{2}\left(\mathbb{R}^{3(M+N)}, \mathbb{C}\right)$ and the Hamiltonian of the molecule can be deduced from its chemical formula:

$$
H=-\sum_{k=1}^{M} \frac{1}{2 m_{k}} \Delta_{\mathbf{R}_{k}}-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}-\sum_{i=1}^{N} \sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}_{i}-\mathbf{R}_{k}\right|}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{1 \leq k<l \leq M} \frac{z_{k} z_{l}}{\left|\mathbf{R}_{k}-\mathbf{R}_{l}\right|}
$$

Atomic units: $\quad \hbar=1, \quad m_{e}=1, \quad e=1, \quad 4 \pi \varepsilon_{0}=1$.

- This Hamiltonian is free of empirical parameters specific to the system.

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be solved. (Dirac, 1929)

Ionization energy of Helium (Korobov \& Yelkhovsky '01):

$$
\mathbf{H e}+\mathbf{h} \nu \rightarrow \mathbf{H e}^{+}+\mathbf{e}^{-}
$$

Ground state energy of He
exp. : 5945204238 MHz ('97)
$\Delta \mathbf{E}=\mathbf{h} v-\mathbf{E}_{\mathbf{c}}\left(\mathbf{e}^{-}\right)=\mathbf{h} \Delta v$ 5945204356 MHz ('98)

Ground state energy of He^{+}

Ionization energy of Helium (Korobov \& Yelkhovsky '01):

$$
\mathbf{H e}+\mathbf{h} \nu \rightarrow \mathbf{H e}^{+}+\mathbf{e}^{-}
$$

Ground state energy of He
exp. : 5945204238 MHz ('97)
$\Delta \mathbf{E}=\mathbf{h} v-\mathbf{E}_{\mathbf{c}}\left(\mathbf{e}^{-}\right)=\mathbf{h} \Delta v$ 5945204356 MHz ('98)

Ground state energy of He^{+}

Ionization energy of Helium (Korobov \& Yelkhovsky '01):

$$
\mathbf{H e}+\mathbf{h} \nu \rightarrow \mathbf{H e}^{+}+\mathbf{e}^{-}
$$

Ground state energy of He

Ground state energy of He^{+}

$$
\begin{aligned}
& H_{\mathrm{He}}=-\frac{1}{2 m} \Delta_{\mathbf{R}}-\frac{1}{2} \Delta_{\mathbf{r}_{1}}-\frac{1}{2} \Delta_{\mathbf{r}_{2}}-\frac{2}{\left|\mathbf{r}_{1}-\mathbf{R}\right|}-\frac{2}{\left|\mathbf{r}_{2}-\mathbf{R}\right|}+\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \\
& H_{\mathrm{He}^{+}}=-\frac{1}{2 m} \Delta_{\mathbf{R}}-\frac{1}{2} \Delta_{\mathbf{r}_{1}}-\frac{2}{\left|\mathbf{r}_{1}-\mathbf{R}\right|}, \quad m=7294.29953 \cdots \mathbf{a . u .}
\end{aligned}
$$

Ionization energy of Helium (Korobov \& Yelkhovsky '01):

$$
\mathbf{H e}+\mathbf{h} \nu \rightarrow \mathbf{H e}^{+}+\mathbf{e}^{-}
$$

Ground state energy of $\mathbf{H e}$

$$
\begin{aligned}
\text { exp. : } & 5945204238 \mathrm{MHz} \text { ('97) } \\
& 5945204356 \mathrm{MHz}\left({ }^{\prime} 98\right) \\
\text { calc.: } & 5945262288 \mathrm{MHz} \\
& 5945204223 \mathrm{MHz} \text { (R.C.) }
\end{aligned}
$$

Ground state energy of He^{+}
$H_{\mathrm{He}}=-\frac{1}{2 m} \Delta_{\mathbf{R}}-\frac{1}{2} \Delta_{\mathbf{r}_{1}}-\frac{1}{2} \Delta_{\mathbf{r}_{2}}-\frac{2}{\left|\mathbf{r}_{1}-\mathbf{R}\right|}-\frac{2}{\left|\mathbf{r}_{2}-\mathbf{R}\right|}+\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}+$ Breit terms
$H_{\mathrm{He}^{+}}=-\frac{1}{2 m} \Delta_{\mathbf{R}}-\frac{1}{2} \Delta_{\mathbf{r}_{1}}-\frac{2}{\left|\mathbf{r}_{1}-\mathbf{R}\right|}+$ Breit terms

Example: computation of some properties of the water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$
A water molecule consists of $M=3$ atomic nuclei (1 oxygen +2 hydrogens) and $N=10$ electrons in Coulomb interaction.

Such a system can be described by the laws of quantum mechanics (many-body Schrödinger equation) and statistical physics.

The only parameters of these models are

- a few fundamental constants of physics (atomic units)

$$
\begin{array}{ll}
\hbar=1, \quad m_{e}=1, \quad e=1, \quad \varepsilon_{0}=(4 \pi)^{-1} \\
c \simeq 137.0359996287515 \ldots, & k_{\mathrm{B}}=3.16681537 \ldots \times 10^{-6}
\end{array}
$$

- the charges and masses of the hydrogen and oxygen (16) nuclei

$$
z_{\mathrm{H}}=1, \quad z_{\mathrm{O}}=8, \quad m_{\mathrm{H}}=1836.152701 \ldots, \quad m_{16 \mathrm{O}}=29156.944123 \ldots
$$

Born-Oppenheimer strategy (based on the fact that $m_{e} / m_{\text {nuc }} \ll 1$):

- Step 1: definition of the potential energy surfaces (elec. struct. calc.)
- Step 2: analysis of the potential energy surfaces.

Electronic problem for a given nuclear configuration $\left\{\mathbf{R}_{k}\right\}_{1 \leq k \leq M}$

Ex: water molecule $\mathrm{H}_{2} \mathrm{O}$

$$
M=3, N=10, z_{1}=8, z_{2}=1, z_{3}=1
$$

$$
V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
$$

$\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}\right) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)$
$\left|\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)\right|^{2}$ probability density of observing electron 1 at \mathbf{r}_{1}, electron 2 at \mathbf{r}_{2}, \ldots

Warning: in this lecture, spin is omitted for simplicity

Electronic problem for a given nuclear configuration $\left\{\mathbf{R}_{k}\right\}_{1 \leq k \leq M}$

Ex: water molecule $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
M=3, N=10, z_{1}=8, z_{2}=1, z_{3}=1 \\
V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
\end{gathered}
$$

$\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}\right) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)$
$\left|\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)\right|^{2}$ probability density of observing electron 1 at \mathbf{r}_{1}, electron 2 at \mathbf{r}_{2}, \ldots

$$
\forall p \in \mathfrak{S}_{N}, \quad \Psi\left(\mathbf{r}_{p(1)}, \cdots, \mathbf{r}_{p(N)}\right)=\varepsilon(p) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right), \quad \text { (Pauli principle) }
$$

Electronic problem for a given nuclear configuration $\left\{\mathbf{R}_{k}\right\}_{1 \leq k \leq M}$

Ex: water molecule $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
M=3, N=10, z_{1}=8, z_{2}=1, z_{3}=1 \\
V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
\end{gathered}
$$

$\left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_{i}}+\sum_{i=1}^{N} V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}\right) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=E \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)$
$\left|\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)\right|^{2}$ probability density of observing electron 1 at \mathbf{r}_{1}, electron 2 at \mathbf{r}_{2}, \ldots

$$
\begin{aligned}
\forall p \in \mathfrak{S}_{N}, \quad \Psi\left(\mathbf{r}_{p(1)}, \cdots, \mathbf{r}_{p(N)}\right)=\varepsilon(p) \Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right), \quad \text { (Pauli principle) } \\
\|\Psi\|_{L^{2}}=1, \quad \rho_{\Psi}(\mathbf{r})=N \int_{\mathbb{R}^{3(N-1)}}\left|\Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
\end{aligned}
$$

Spectrum of the electronic hamiltonian

$$
H_{N}^{\left\{\mathbf{R}_{k}\right\}}=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}-\sum_{i=1}^{N} V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{ne}}\left(\mathbf{r}_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad \text { on } \quad \bigwedge^{N} L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)
$$

(Pauli principle)
Zhislin's theorem: if $N \leq \sum_{k=1}^{M} z_{k}$ (neutral or positively charged system), then

$$
\sigma\left(H_{N}^{\left\{\mathbf{R}_{k}\right\}}\right)=\left\{E_{0}^{\left\{\mathbf{R}_{k}\right\}} \leq E_{1}^{\left\{\mathbf{R}_{k}\right\}} \leq E_{2}^{\left\{\mathbf{R}_{k}\right\}} \cdots\right\} \cup\left[\Sigma^{\left\{\mathbf{R}_{k}\right\}},+\infty\right)
$$

Ground state Excited states

Step 1: definition of the potential energy surfaces

$$
W_{n}\left(\mathbf{R}_{1}, \cdots, \mathbf{R}_{M}\right)=E_{n}^{\left\{\mathbf{R}_{k}\right\}}+\sum_{1 \leq k<l \leq M} \frac{z_{k} z_{l}}{\left|\mathbf{R}_{k}-\mathbf{R}_{l}\right|}
$$

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

First-principle molecular dynamics

$$
m_{k} \frac{d^{2} \mathbf{R}_{k}}{d t^{2}}(t)=-\nabla_{\mathbf{R}_{k}} W_{0}\left(\mathbf{R}_{1}(t), \cdots, \mathbf{R}_{M}(t)\right), \quad 1 \leq k \leq M
$$

The nuclei behave as point-like classical particle interacting via the effective M-body potential W_{0}.

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Global minima of W_{0} : equilibrium configurations of the system

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Vibration frequencies (harm. approx.)

$$
\begin{aligned}
\mathbf{R}_{k}(t) & =\mathbf{R}_{k}^{0}+\mathbf{y}_{k}(t) \\
m_{k} \frac{d^{2} y_{k, i}}{d t^{2}} & =-\sum_{l=1}^{M} \sum_{j=1}^{3} \frac{\partial^{2} W_{0}}{\partial R_{k, i} \partial R_{l, j}}\left(\mathbf{R}_{0}\right) y_{l, j}
\end{aligned}
$$

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Vibration frequencies (harm. approx.)
$\mathbf{R}_{k}(t)=\mathbf{R}_{k}^{0}+\mathbf{y}_{k}(t)$
$m_{k} \frac{d^{2} y_{k, i}}{d t^{2}}=-\sum_{l=1}^{M} \sum_{j=1}^{3} \frac{\partial^{2} W_{0}}{\partial R_{k, i} \partial R_{l, j}}\left(\mathbf{R}_{0}\right) y_{l, j}$
$\rightarrow \quad$ infrared spectrum

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Vertical transition energies: visible spectrum (color) ultraviolet spectrum
X spectrum ionization energy

Step 2: analysis of the potential energy surfaces

Born-Oppenheimer approximation

- adiabatic approximation

$$
m_{e} / m_{\mathrm{nuc}} \ll 1
$$

- semiclassical approximation on the nuclear dynamics: $\hbar \rightarrow 0$

Local minima: (meta)stable states (reactants and products)
Critical points of W_{0} with Morse index 1: transition states
$\mathbf{O H}+\mathbf{H} \rightarrow \mathbf{H}_{2} \mathbf{O} \quad k_{\mathrm{TST}}=\frac{\prod_{i=1}^{3 N-6} \nu_{i}^{\mathrm{Re}}}{\prod_{i=1}^{3 N-7} \nu_{i}^{\mathrm{TS},+}} e^{-E_{\mathrm{a}} / k_{\mathrm{B}} T} \quad$ (large deviation theory).2 - First-principle molecular simulation26

Kohn-Sham model

$$
\begin{gathered}
\left(-\frac{1}{2} \Delta+V_{\left\{\mathbf{R}_{k}\right\}}^{\mathrm{KS}}\left[\phi_{1}, \cdots, \phi_{N}\right]\right) \phi_{i}(\mathbf{r})=\varepsilon_{i} \phi_{i}(\mathbf{r}), \quad \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}, \quad 1 \leq i, j \leq N \\
\longrightarrow \quad \text { system of } N \text { nonlinear 3D Schrödinger equations }
\end{gathered}
$$

N-body electronic Schrödinger equation	Wavefunction methods	Hartree-Fock Single-reference methods: MPn, CI, CC, ... Multi-reference methods: MCSCF, MRCC,
	Density functional theory (DFT)	Thomas-Fermi (orbital free) : TF, TFW, ... Kohn-Sham : Hartree, X α, LDA, GGA, ...
	Quantum Monte Carlo	Variational MC Diffusion MC

Equilibrium geometry of the water molecule (3 nuclei, 10 electrons) Minimizers of $W_{0}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}\right)=w_{0}\left(r_{\mathrm{OH}_{1}}, r_{\mathrm{OH}_{2}}, \theta_{\mathrm{HOH}}\right)$

Kohn-Sham DFT calculation (scales as N^{3} or less) GGA (PBE)-6-311+G**: 96.90 pm, 104.75 ${ }^{\circ}$

3 - Density Functional Theory and Kohn-Sham models

Hohenberg-Kohn splitting of the electronic Hamiltonian

$$
\begin{gathered}
E_{0}=\inf \left\{\langle\Psi| H_{N}|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}, \quad \mathcal{W}_{N}=\left\{\Psi \in \bigwedge_{i=1}^{N} L^{2}\left(\mathbb{R}^{3}\right) \cap H^{1}\left(\mathbb{R}^{3 N}\right),\|\Psi\|_{L^{2}}=1\right\} \\
H_{N}=H_{N}^{1}+V_{\mathrm{ne}}=H_{N}^{1}+\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right) \\
H_{N}^{1}=T+V_{\mathrm{ee}}=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad V(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|}
\end{gathered}
$$

Electronic density

$$
\Psi \in \mathcal{W}_{N} \quad \mapsto \quad \rho_{\Psi}(\mathbf{r})=N \int_{\mathbb{R}^{3(N-1)}}\left|\Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right)\right|^{2} d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
$$

Levy constrained search approach

$$
\begin{aligned}
E_{0} & =\inf _{\Psi}\langle\Psi| H_{N}|\Psi\rangle \\
& =\inf _{\Psi}\left(\langle\Psi| H_{N}^{1}|\Psi\rangle+\langle\Psi|\left(\sum_{i=1}^{N} V\left(\mathbf{r}_{i}\right)\right)|\Psi\rangle\right) \\
& =\inf _{\Psi}\left(\langle\Psi| H_{N}^{1}|\Psi\rangle+\int_{\mathbb{R}^{3}} \rho_{\Psi} V\right) \\
& =\inf _{\rho} \inf _{\Psi \mid \rho_{\Psi}=\rho}\left(\langle\Psi| H_{N}^{1}|\Psi\rangle+\int_{\mathbb{R}^{3}} \rho_{\Psi} V\right) \\
& =\inf _{\rho}\left(\inf _{\Psi \mid \rho_{\Psi}=\rho}\langle\Psi| H_{N}^{1}|\Psi\rangle+\int_{\mathbb{R}^{3}} \rho V\right) \\
& =\inf _{\rho}\left(F_{\mathrm{LL}}(\rho)+\int_{\mathbb{R}^{3}} \rho V\right)
\end{aligned}
$$

Levy-Lieb functional

$$
\begin{gathered}
E_{0}=\inf \left\{F_{\mathrm{LL}}(\rho)+\int_{\mathbb{R}^{3}} \rho V, \rho \in \mathcal{R}_{N}\right\} \\
F_{\mathrm{LL}}(\rho)=\inf \left\{\langle\Psi| H_{N}^{1}|\Psi\rangle, \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\} \\
\mathcal{R}_{N}=\left\{\rho, \exists \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\}=\left\{\rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
\end{gathered}
$$

$F_{\mathrm{LL}}(\rho)$ is a "universal" functional of the density

Problem: no easy-to-compute expression of $F_{\mathrm{LL}}(\rho)$ is known

Lieb functional
For any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$, we can define

$$
E(v)=\inf \left\{\langle\Psi| H_{N}^{1}+\sum_{i=1}^{N} v\left(\mathbf{r}_{i}\right)|\Psi\rangle, \Psi \in \mathcal{W}_{N}\right\}
$$

and $v \mapsto E(v)$ is a real-valued, concave, continuous function.

It holds (Lieb '83)

$$
E(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\int_{\mathbb{R}^{3}} \rho v, \rho \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)\right\}
$$

where $F_{\mathrm{L}}(\rho)$ is the convex w-l.s.c. function defined on $L^{1}\left(\mathbb{R}^{3}\right) \cap L^{3}\left(\mathbb{R}^{3}\right)$ by

$$
F_{\mathrm{L}}(\rho)=\sup \left\{E(v)-\int_{\mathbb{R}^{3}} \rho v, v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\}
$$

No explicit expressions of the functionals F_{L} and F_{LL} are known. Approximations are needed for numerical simulations.

Two classes of approximate functionals are available, built from the exact functionals of simple reference systems:

- orbital-free models: reference system = homogeneous electron gas
orbital-free functionals are cheap but inaccurate except in a few cases;
- Kohn-Sham models: reference system $=N$ non-interacting electrons

Kohn-Sham functionals are much more accurate, but more expensive.

In orbital-free models, the density functional is explicit in ρ.
Examples:

- Thomas-Fermi (TF) model

$$
\begin{gathered}
\mathcal{E}^{\mathrm{TF}}(\rho)=C_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5 / 3}+\int_{\mathbb{R}^{3}} \rho V+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
E_{0} \sim \inf \left\{\mathcal{E}^{\mathrm{TF}}(\rho), \rho \geq 0, \rho \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{5 / 3}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\} .
\end{gathered}
$$

- Thomas-Fermi-von Weizsäcker (TFW) model

$$
\begin{aligned}
\mathcal{E}^{\mathrm{TFW}}(\rho) & =C_{\mathrm{W}} \int_{\mathbb{R}^{3}}|\nabla \sqrt{\rho}|^{2}+C_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5 / 3}+\int_{\mathbb{R}^{3}} \rho V+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \\
E_{0} & \sim \inf \left\{\mathcal{E}^{\mathrm{TFW}}(\rho), \rho \geq 0, \sqrt{\rho} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \rho=N\right\}
\end{aligned}
$$

Density functional theory for non-interacting electrons

	Hamiltonian	Levy-Lieb	Lieb
Interacting e $^{-}$	H_{N}^{1}	$F_{\mathrm{LL}}(\rho)$	$F_{\mathrm{L}}(\rho)$
Non-interacting e ${ }^{-}$	H_{N}^{0}	$T_{\mathrm{LL}}(\rho)$	$T_{\mathrm{J}}(\rho)$

$$
H_{N}^{1}=T+V_{\mathrm{ee}}=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}+\sum_{1 \leq i<j \leq N} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \quad H_{N}^{0}=T=-\sum_{i=1}^{N} \frac{1}{2} \Delta_{\mathbf{r}_{i}}
$$

Levy-Lieb approach

$$
\begin{aligned}
T_{\mathrm{LL}}(\rho) & =\inf \left\{\langle\Psi| T|\Psi\rangle, \Psi \in \mathcal{W}_{N} \text { s.t. } \rho_{\Psi}=\rho\right\} \\
& \leq \inf \left\{\langle\Psi| T|\Psi\rangle, \Psi \text { is a Slater determinant s.t. } \rho_{\Psi}=\rho\right\} \\
& =\inf \left\{\sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}, \sum_{i=1}^{N}\left|\phi_{i}\right|^{2}=\rho\right\} \\
& =T_{\mathrm{KS}}(\rho) .
\end{aligned}
$$

A Slater determinant (with finite energy) is a wavefunction Ψ of the form

$$
\Psi\left(\mathbf{r}_{1}, \cdots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\phi_{1}\left(\mathbf{r}_{1}\right) & \cdots & \cdot & \phi_{1}\left(\mathbf{r}_{N}\right) \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdots & \cdot \\
\phi_{N}\left(\mathbf{r}_{1}\right) & \cdots & \cdot & \phi_{N}\left(\mathbf{r}_{N}\right)
\end{array}\right|, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \quad \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}
$$

Kohn-Sham model

1. For N non interacting electrons, the density functional is (approximatively) given by

$$
T_{\mathrm{KS}}(\rho)=\left\{\sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right) \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} \sum_{i=1}^{N}\left|\phi_{i}\right|^{2}=\rho\right\}
$$

2. For a classical charge distribution of density ρ, the Coulomb interaction reads

$$
J(\rho) \stackrel{\text { def }}{=} \frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{|x-y|} d x d y
$$

3. Kohn and Sham proposed the following decomposition of F_{LL}

$$
F_{\mathrm{LL}}(\rho)=T_{\mathrm{KS}}(\rho)+J(\rho)+E_{\mathrm{xc}}(\rho) \quad \text { where } \quad E_{\mathrm{xc}}(\rho) \stackrel{\text { def }}{=} F_{\mathrm{LL}}(\rho)-T_{\mathrm{KS}}(\rho)-J(\rho)
$$

E_{xc} is called the exchange-correlation functional.

Exchange-correlation functional

$$
\left|E_{\mathrm{xc}}(\rho)\right| \ll J(\rho) \text { and } T_{\mathrm{KS}}(\rho)
$$

A possible approximation of $E_{\mathrm{xc}}(\rho)$ is

$$
E_{\mathrm{xc}}^{\mathrm{LDA}}(\rho)=\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}(\rho(x)) d x
$$

where $e_{\mathrm{xc}}(\bar{\rho})$ is the exchange-correlation energy density in a homogeneous electron gas of density $\bar{\rho}$.
$\longrightarrow \quad$ Local Density Approximation (LDA)
The function $e_{\mathrm{xc}}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is obtained by interpolation of asymptotic expansions and benchmark Quantum Monte Carlo calculations on the homogeneous electron gas.

Rewriting the minimization problem in terms of $\Phi=\left(\phi_{1}, \cdots, \phi_{N}\right)$, one obtains

$$
E_{0} \simeq \inf \left\{E^{\mathrm{KS}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H^{1}\left(\mathbb{R}^{3}\right)\right)^{N}, \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right\}
$$

$$
E^{\mathrm{KS}}(\Phi)=\frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}+\int_{\mathbb{R}^{3}} \rho_{\Phi} V
$$

$$
+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{\Phi}(\mathbf{r}) \rho_{\Phi}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}\left(\rho_{\Phi}(\mathbf{r})\right) d \mathbf{r}
$$

with $\quad V(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|} \quad \rho_{\Phi}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}$.

Existence of solutions for neutral and positively charged systems: Le Bris '93, Anantharaman-Cancès '09.

Kohn-Sham equations (Euler-Lagrange + invariance + loc. min.)

$$
\begin{cases}-\frac{1}{2} \Delta \phi_{i}+\mathcal{W}_{\Phi} \phi_{i}=\varepsilon_{i} \phi_{i} & 1 \leq i \leq N \\ \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} & 1 \leq i, j \leq N\end{cases}
$$

- In the Hartree-Fock model, the potential \mathcal{W}_{Φ} is nonlocal

$$
\mathcal{W}_{\Phi}^{\mathrm{HF}} \phi=\left(V+\rho_{\Phi} \star \frac{1}{|\cdot|}\right) \phi-\int_{\mathbb{R}^{3}} \frac{\gamma_{\Phi}\left(\cdot, \mathbf{r}^{\prime}\right)}{\left|\cdot-\mathbf{r}^{\prime}\right|} \phi\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}, \quad \gamma_{\Phi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{i=1}^{N} \phi_{i}(\mathbf{r}) \phi_{i}\left(\mathbf{r}^{\prime}\right)
$$

while it is local in the Kohn-Sham LDA model

$$
\mathcal{W}_{\Phi}^{\mathrm{KS}-\mathrm{LDA}} \phi=\left(V+\rho_{\Phi} \star \frac{1}{|\cdot|}+\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho_{\Phi}\right)\right) \phi
$$

- In the Hartree-Fock model, $\varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{N}$ are the lowest N eigenvalues of $-\frac{1}{2} \Delta+\mathcal{W}_{\Phi}$, while it is not known whether this property holds true for the Kohn-Sham LDA model.

"Improvements" of the LDA: Jacob’s ladder (Perdew)

Heaven	Exact exchange-correlation functional
Rung 5	explicit functionals of the Kohn-Sham occupied and unoccupied orbitals
Rung 4	explicit functionals of the KS density matrix (ex: hybrid functionals)
	$1 / 2$ \& 1/2, B3P, B3LYP, PBE0, O3LYP, X3LYP, mPW1PW91, BMK, PWB6K, B1B95, PW6B95, TPSSh, M05,
Rung 3	meta-GGA (explicit in $\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \Delta \rho(\mathbf{r})$ and $\left.\tau(\mathbf{r})=\sum^{N}\left\|\nabla \phi_{i}(\mathbf{r})\right\|^{2}\right)$
Rung 2	GGA (explicit in $\rho(\mathbf{r})$ and $\nabla \rho(\mathbf{r})$)
Rung 1	LDA (explicit in $\rho(\mathbf{r})$)
Earth	Hartree (reduced Hartree-Fock) model

Physical interpretation of $F_{\mathrm{L}}(\rho)$
Mixed states of N-electron systems are described by N-electron density matrices of the form
$\Gamma=\sum_{n=1}^{+\infty} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|, \Psi_{n} \in \bigwedge_{i=1}^{N} L^{2}\left(\mathbb{R}^{3}\right),\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}, 0 \leq p_{n} \leq 1, \sum_{n=1}^{+\infty} p_{n}=1$
the density of Γ being given by

$$
\rho_{\Gamma}(\mathbf{r})=\sum_{n=1}^{+\infty} p_{n} \rho_{\Psi_{n}}(\mathbf{r})
$$

Γ is of finite energy if $\sum_{n=1}^{+\infty} p_{n}\left\|\nabla \Psi_{n}\right\|_{L^{2}}^{2}<\infty$, its energy being then

$$
\operatorname{Tr}\left(H_{N} \Gamma\right)=\sum_{n=1}^{+\infty} p_{n}\left\langle\Psi_{n}\right| H_{N}\left|\Psi_{n}\right\rangle=\operatorname{Tr}\left(H_{N}^{1} \Gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\Gamma} V .
$$

Let us denote by \mathcal{D}_{N} the convex set consisting of the N-electron density matrices of finite energy

$$
\left\{\rho \mid \exists \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\}=\mathcal{R}_{N} .
$$

Therefore

$$
\begin{aligned}
E_{0} & =\inf \left\{\operatorname{Tr}\left(H_{N} \Gamma\right), \Gamma \in \mathcal{D}_{N}\right\} \\
& =\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\Gamma} V, \Gamma \in \mathcal{D}_{N}\right\} \\
& =\inf \left\{\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right), \Gamma \in \mathcal{D}_{N}, \rho_{\Gamma}=\rho\right\}+\int_{\mathbb{R}^{3}} \rho V, \rho \in \mathcal{R}_{N}\right\} .
\end{aligned}
$$

It holds that $\quad F_{\mathrm{L}}(\rho)=\left\lvert\, \begin{array}{ll}\inf \left\{\operatorname{Tr}\left(H_{N}^{1} \Gamma\right), \Gamma \in \mathcal{D}_{N}, \rho_{\Gamma}=\rho\right\} & \text { if } \rho \in \mathcal{R}_{N}, \\ +\infty & \text { if } \rho \notin \mathcal{R}_{N},\end{array}\right.$ and that F_{L} is the convex hull of F_{LL} on the convex set \mathcal{R}_{N}.

One-body reduced density matrices
Let $\Psi \in \bigwedge_{i=1}^{N} L^{2}\left(\mathbb{R}^{3}\right)$ such that $\|\Psi\|_{L^{2}}=1$. The (one-body) reduced density matrix associated with Ψ is the function

$$
\gamma_{\Psi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right):=N \int_{\mathbb{R}^{3(N-1)}} \Psi\left(\mathbf{r}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right) \Psi\left(\mathbf{r}^{\prime}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}\right) d \mathbf{r}_{2} \cdots d \mathbf{r}_{N}
$$

Note that $\quad \rho_{\Psi}(\mathbf{r})=\gamma_{\Psi}(\mathbf{r}, \mathbf{r})$.

The function $\gamma_{\Psi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ can be considered as the Green kernel of the operator on $L^{2}\left(\mathbb{R}^{3}\right)$, also denoted by γ_{Ψ}, and called the one-body reduced density operator, defined for all $\phi \in L^{2}\left(\mathbb{R}^{3}\right)$ by

$$
\left(\gamma_{\Psi} \phi\right)(\mathbf{r})=\int_{\mathbb{R}^{3}} \gamma_{\Psi}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime}
$$

The operator γ_{Ψ} is self-adjoint on $L^{2}\left(\mathbb{R}^{3}\right)$ and satisfies

$$
0 \leq \gamma_{\Psi} \leq 1 \quad \text { and } \quad \operatorname{Tr}\left(\gamma_{\Psi}\right)=N
$$

Therefore, γ_{Ψ} can be diagonalized as follows: there exists an orthonormal basis $\left(\phi_{i}\right)_{i \geq 1}$ of $L^{2}\left(\mathbb{R}^{3}\right)$ and a non-increasing sequence $\left(n_{i}\right)_{i \geq 1}$ of real numbers such that

$$
\gamma_{\Psi}=\sum_{i=1}^{+\infty} n_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \quad \text { with } \quad 0 \leq n_{i} \leq 1 \quad \text { and } \quad \sum_{i=1}^{+\infty} n_{i}=N
$$

The n_{i} and the ϕ_{i} are called respectively the natural occupation numbers and the natural spin-orbitals of the wavefunction Ψ.

If in addition Ψ is of finite energy, then all the ϕ_{i} are in $H^{1}\left(\mathbb{R}^{3}\right)$ and

$$
\langle\Psi| T|\Psi\rangle=\frac{1}{2} \sum_{i=1}^{+\infty} n_{i} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}(\mathbf{r})\right|^{2} d \mathbf{r}=\mathbf{T r}\left(-\frac{1}{2} \Delta \gamma_{\Psi}\right) .
$$

Let $\Gamma \in \mathcal{D}_{N}$

$$
\Gamma=\sum_{n=1}^{+\infty} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|, \quad \Psi_{n} \in \bigwedge_{i=1}^{N} L^{2}\left(\mathbb{R}^{3}\right), \quad\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}, \quad 0 \leq p_{n} \leq 1, \quad \sum_{n=1}^{+\infty} p_{n}=1
$$

The first order reduced density operator associated with Γ is

$$
\gamma_{\Gamma}=\sum_{n=1}^{+\infty} p_{n} \gamma_{\Psi_{n}} . \quad \text { Note that } \quad \rho_{\Gamma}(\mathbf{r})=\gamma_{\Gamma}(\mathbf{r}, \mathbf{r})
$$

It holds

$$
\gamma_{\Gamma}^{*}=\gamma_{\Gamma}, \quad 0 \leq \gamma_{\Gamma} \leq 1, \quad \operatorname{Tr}\left(\gamma_{\Gamma}\right)=N, \quad \operatorname{Tr}\left(H_{N}^{0} \Gamma\right)=\mathbf{T r}\left(-\frac{1}{2} \Delta \gamma_{\Gamma}\right)
$$

Ensemble N-representability of first-order reduced density matrices

$$
\begin{aligned}
\mathcal{C}_{N} & =\left\{\gamma \mid \exists \Gamma \in \mathcal{D}_{N} \text { s.t. } \gamma_{\Gamma}=\gamma\right\} \\
& =\left\{\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right) \mid 0 \leq \gamma \leq 1, \mathbf{T r}(\gamma)=N, \mathbf{T r}(-\Delta \gamma)<\infty\right\}
\end{aligned}
$$

Lieb approach (Janak functional)

$$
\begin{aligned}
T_{\mathrm{J}}(\rho) & =\inf \left\{\operatorname{Tr}\left(H_{N}^{0} \Gamma\right), \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\} \\
& =\inf \left\{\operatorname{Tr}\left(-\frac{1}{2} \Delta \gamma_{\Gamma}\right), \Gamma \in \mathcal{D}_{N} \text { s.t. } \rho_{\Gamma}=\rho\right\} \\
& =\inf \left\{\operatorname{Tr}\left(-\frac{1}{2} \Delta \gamma\right), \gamma \in \mathcal{C}_{N} \text { s.t. } \rho_{\gamma}=\rho\right\} \quad \text { where } \rho_{\gamma}(\mathbf{r})=\gamma(\mathbf{r}, \mathbf{r}) \\
& =\inf \left\{\sum_{i=1}^{+\infty} \frac{1}{2} n_{i} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right. \\
& \left.0 \leq n_{i} \leq 1, \sum_{i=1}^{+\infty} n_{i}\left|\phi_{i}\right|^{2}=\rho\right\}
\end{aligned}
$$

Extended Kohn-Sham LDA model

$$
\begin{gathered}
\inf \left\{\mathcal{E}(\gamma), \gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right), 0 \leq \gamma \leq 1, \operatorname{Tr}(\gamma)=N, \operatorname{Tr}(-\Delta \gamma)<\infty\right\} \\
\mathcal{E}(\gamma)=\mathbf{T r}\left(-\frac{1}{2} \Delta \gamma\right)+\int_{\mathbb{R}^{3}} \rho_{\gamma} V+J\left(\rho_{\gamma}\right)+\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}\left(\rho_{\gamma}\right), \quad \rho_{\gamma}(\mathbf{r})=\gamma(\mathbf{r}, \mathbf{r})
\end{gathered}
$$

The minimization set \mathcal{C}_{N} is convex and any $\gamma \in \mathcal{C}_{N}$ can be written as

$$
\begin{gathered}
\gamma=\sum_{i=1}^{+\infty} n_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}, \quad 0 \leq n_{i} \leq 1, \quad \sum_{i=1}^{+\infty} n_{i}=N, \quad \phi_{i} \in H^{1}\left(\mathbb{R}^{3}\right) .
\end{gathered}
$$

Extended Kohn-Sham LDA equations

$$
\begin{gathered}
\gamma^{0}=\sum_{i} n_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \quad \rho^{0}(\mathbf{r})=\sum_{i} n_{i}\left|\phi_{i}(\mathbf{r})\right|^{2} \\
\left\{\begin{array}{l}
H_{\rho^{0}} \phi_{i}=\varepsilon_{i} \phi_{i} \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}
\end{array} \text { and } \left\lvert\, \begin{array}{l}
n_{i}=1 \text { if } \varepsilon_{i}<\varepsilon_{\mathrm{F}}, \\
0 \leq n_{i} \leq 1 \\
n_{i}=0 \text { if } \varepsilon_{i}=\varepsilon_{i},
\end{array} \sum_{i} n_{i}=N\right.\right. \\
H_{\rho^{0}}=-\frac{1}{2} \Delta+V+\rho^{0} \star|\mathbf{r}|^{-1}+\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho^{0}\right)
\end{gathered}
$$

4 - Infinite systems

$\underline{\text { Periodic 3D system }}$

Alloy at finite temperature

Periodic 2D system

Amorphous system

Thermodynamic limit (bulk limit) for perfect crystals

Thermodynamic limit (bulk limit) for perfect crystals

$$
\left\{\begin{array}{ll|ll}
\rho_{L}^{\text {nuc }}=\sum_{\mathbf{R} \in \mathbb{Z}^{3} \cap(-L / 2, L / 2]^{3}} z m(\cdot-\mathbf{R}) & & E_{L}^{0} & \text { ground state total energy } \\
z L^{3} \text { electrons } & \longrightarrow & \rho_{L}^{0} & \text { (unique) ground state density } \\
& & \gamma_{L}^{0} & \text { a ground state density matrix }
\end{array}\right.
$$

Theorem (Catto-Le Bris-Lions, '01). For the Hartree model (KS with no xc)

$$
\lim _{L \rightarrow \infty} \frac{E_{L}^{0}}{L^{3}}=E_{\mathrm{per}}^{0}, \quad \rho_{L}^{0} \xrightarrow[L \rightarrow \infty]{\text { in some sense }} \rho_{\mathrm{per}}^{0}, \quad \quad \gamma_{L}^{0} \xrightarrow[L \rightarrow \infty]{\text { in some sense }} \gamma_{\mathrm{per}}^{0} .
$$

Periodic Kohn-Sham equations

$$
\left\{\begin{array}{l}
H_{\mathrm{per}}^{0}=-\frac{1}{2} \Delta+V_{\mathrm{per}}^{0}+V_{\mathrm{per}}^{\mathrm{xc}} \\
-\Delta V_{\mathrm{per}}^{0}=4 \pi\left(\rho_{\mathrm{per}}^{\mathrm{nuc}}-\rho_{\mathrm{per}}^{0}\right), \quad V_{\mathrm{per}}^{0} \mathbb{Z}^{3} \text {-periodic } \\
\rho_{\mathrm{per}}^{0}(\mathbf{r}) \stackrel{\text { formally }}{=} \gamma_{\mathrm{per}}^{0}(\mathbf{r}, \mathbf{r}) \\
V_{\mathrm{per}}^{\mathrm{xc}}(\mathbf{r})=\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho_{\mathrm{per}}^{0}(\mathbf{r})\right) \\
(\mathbf{L D A}) \\
\gamma_{\mathrm{per}}^{0}=\mathbb{1}_{\left(-\infty, \varepsilon_{\mathrm{F}}\right)}\left(H_{\mathrm{per}}^{0}\right), \quad \int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{0}=\int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{\mathrm{nuc}}
\end{array}\right.
$$

Periodic Kohn-Sham equations

$$
\left\{\begin{array}{l}
H_{\mathrm{per}}^{0}=-\frac{1}{2} \Delta+V_{\mathrm{per}}^{0}+V_{\mathrm{per}}^{\mathrm{xc}} \\
-\Delta V_{\mathrm{per}}^{0}=4 \pi\left(\rho_{\mathrm{per}}^{\mathrm{nuc}}-\rho_{\mathrm{per}}^{0}\right), \\
\rho_{\mathrm{per}}^{0}(\mathbf{r}) \stackrel{\text { formally }}{=} \gamma_{\mathrm{per}}^{0}(\mathbf{r}, \mathbf{r}) \\
V_{\mathrm{per}}^{\mathrm{xc}}(\mathbf{r})=\frac{d e_{\mathrm{xc}}^{3}}{d \rho}\left(\rho_{\mathrm{per}}^{0}(\mathbf{r})\right) \\
\mathbf{(L D A} \text {-periodic }
\end{array} \quad \begin{array}{l}
\text { Conduction bands } \\
\gamma_{\mathrm{per}}^{0}=\mathbb{1}_{\left(-\infty, \varepsilon_{\mathrm{F}}\right)}\left(H_{\mathrm{per}}^{0}\right), \quad \int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{0}=\int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{\mathrm{nuc}}
\end{array}\right.
$$

Periodic Kohn-Sham equations

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{z}=3 \\
\text { Conductor }
\end{array} \\
& \left\{\begin{array}{l}
H_{\mathrm{per}}^{0}=-\frac{1}{2} \Delta+V_{\mathrm{per}}^{0}+V_{\mathrm{per}}^{\mathrm{xc}} \\
-\Delta V_{\mathrm{per}}^{0}=4 \pi\left(\rho_{\mathrm{per}}^{\mathrm{nuc}}-\rho_{\mathrm{per}}^{0}\right), \quad V_{\mathrm{per}}^{0} \mathbb{Z}^{3} \text {-periodic }
\end{array}\right. \\
& \rho_{\mathrm{per}}^{0}(\mathbf{r}) \stackrel{\text { formally }}{=} \gamma_{\mathrm{per}}^{0}(\mathbf{r}, \mathbf{r}) \\
& V_{\mathrm{per}}^{\mathrm{xc}}(\mathbf{r})=\frac{d e_{\mathrm{xc}}}{d \rho}\left(\rho_{\mathrm{per}}^{0}(\mathbf{r})\right) \quad(\mathbf{L D A}) \\
& \gamma_{\mathrm{per}}^{0}=\mathbb{1}_{\left(-\infty, \varepsilon_{\mathrm{F}}\right)}\left(H_{\mathrm{per}}^{0}\right), \quad \int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{0}=\int_{\left[-\frac{1}{2}, \frac{1}{2}\right)^{3}} \rho_{\mathrm{per}}^{\mathrm{nuc}} \\
& \text { Conduction states } \\
& \text { Valence states } \\
& \text { (Fermi sea) }
\end{aligned}
$$

Thermodynamic limit for crystals with defects

Crystals are like people, it is their defects that make them interesting
(attributed to F. C. Franck)

Thermodynamic limit for crystals with defects

Crystals are like people, it is their defects that make them interesting
(attributed to F. C. Franck)

DFT models for a single defect (or a finite number of defects)

- TF: Lieb-Simon ('77), TFW: Catto-Le Bris-Lions ('98)
- Hartree: EC, Deleurence, Lewin ('08), EC, Lewin ('10),

Franck, Lewin, Lieb, Seiringer ('11), EC, Stoltz ('12), Gontier-Lahbabi ('16)

- LDA: EC, Deleurence, Lewin ('08)

Thermodynamic limit for crystals with defects

Crystals are like people, it is their defects that make them interesting
(attributed to F. C. Franck)

DFT models for stationary random distributions of defects

- TFW: Blanc, Le Bris, Lions '07
- Hartree (short-range interaction only): EC, Lahbabi, Lewin, '13

Supercell method for Kohn-Sham simulations in the condensed phase

For infinite, macroscopically homogeneous, systems: supercell method \sim representative volume method $(\mathbf{R V P})$ of stochastic homogenization

Converges when $L \rightarrow \infty$ for the Hartree model for perfect crystals (\Leftrightarrow uniform Brillouin zone discretization) and crystals with a single defect.

5 - Standard discretization methods and algorithms

Quantum chemistry	Solid state physics/materials science
Finite systems	Infinite systems (supercell method)
Gaussian atomic orbitals	Planewaves
Some popular AO codes: Gaussian, Molpro, Q-Chem	Abinit, CASTEP, Quantum Espresso, VASP

https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

Galerkin approximation of the Kohn-Sham LDA model (finite systems)

$$
\begin{gathered}
E_{0} \simeq \inf \left\{E^{\mathrm{KS}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H^{1}\left(\mathbb{R}^{3}\right)\right)^{N}, \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right\} \\
E^{\mathrm{KS}}(\Phi)=\frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{3}}\left|\nabla \phi_{i}\right|^{2}+\int_{\mathbb{R}^{3}} \rho_{\Phi} V+\frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{\Phi}(\mathbf{r}) \rho_{\Phi}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}+\int_{\mathbb{R}^{3}} e_{\mathrm{xc}}^{\mathrm{LDA}}\left(\rho_{\Phi}(\mathbf{r})\right) d \mathbf{r} \\
\text { with } \quad V(\mathbf{r})=-\sum_{k=1}^{M} \frac{z_{k}}{\left|\mathbf{r}-\mathbf{R}_{k}\right|} \quad \rho_{\Phi}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2} .
\end{gathered}
$$

Approximation space: $\mathcal{X}=\boldsymbol{\operatorname { S p a n }}\left(\chi_{1}, \cdots, \chi_{N_{b}}\right) \subset H^{1}\left(\mathbb{R}^{3}\right), \boldsymbol{\operatorname { d i m }}(\mathcal{X})=N_{b}$.

$$
\begin{gathered}
E_{0}^{\mathrm{KS}} \leq E_{0, \mathcal{X}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in \mathcal{X}^{N}, \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j}\right\} \\
\Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in \mathcal{X}^{N} \quad \Rightarrow \quad \phi_{i}(\mathbf{r})=\sum_{\mu=1}^{N_{b}} C_{\mu i} \chi_{\mu}(\mathbf{r})
\end{gathered}
$$

Discretized formulation of the Kohn-Sham model

$$
\begin{gathered}
E_{0, \mathcal{X}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}\left(C C^{T}\right), C \in \mathbb{R}^{N_{b} \times N}, C^{T} S C=I_{N}\right\} \\
E^{\mathrm{KS}}(D)=\operatorname{Tr}(h D)+\frac{1}{2} \mathbf{T r}(J(D) D)+E_{\mathrm{xc}}^{\mathrm{LDA}}(D), \quad[J(D)]_{\mu \nu}=\sum_{\kappa \lambda}(\mu \nu \mid \kappa \lambda) D_{\kappa \lambda}
\end{gathered}
$$

Electronic integrals

- Overlap matrix: $S_{\mu \nu}=\int_{\mathbb{R}^{3}} \chi_{\mu} \chi_{\nu}$
- Core Hamiltonian matrix: $h_{\mu \nu}=\frac{1}{2} \int_{\mathbb{R}^{3}} \nabla \chi_{\mu} \cdot \nabla \chi_{\nu}-\sum_{k=1}^{M} z_{k} \int_{\mathbb{R}^{3}} \frac{\chi_{\mu}(\mathbf{r}) \chi_{\nu}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{R}_{k}\right|} d \mathbf{r}$
- Two-electron integrals: $(\mu \nu \mid \kappa \lambda)=\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\chi_{\mu}(\mathbf{r}) \chi_{\nu}(\mathbf{r}) \chi_{\kappa}\left(\mathbf{r}^{\prime}\right) \chi_{\lambda}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}$

Fundamental remark (Boys 1950): if the χ_{μ} are gaussian-polynomials

$$
\chi_{\mu}(\mathbf{r})=p(\mathbf{r}) \exp \left(-\alpha|\mathbf{r}|^{2}\right)
$$

then the one-electron integrals

$$
S_{\mu \nu}=\int_{\mathbb{R}^{3}} \chi_{\mu} \chi_{\nu}, \quad h_{\mu \nu}=\frac{1}{2} \int_{\mathbb{R}^{3}} \nabla \chi_{\mu} \cdot \nabla \chi_{\nu}+\int_{\mathbb{R}^{3}} V^{\mathrm{ne}} \chi_{\mu} \chi_{\nu}
$$

and the two-electron integrals

$$
(\mu \nu \mid \kappa \lambda)=\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\chi_{\mu}(\mathbf{r}) \chi_{\nu}(\mathbf{r}) \chi_{\kappa}\left(\mathbf{r}^{\prime}\right) \chi_{\lambda}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}
$$

can be computed analytically.

The exchange-correlation energy is computed by numerical quadrature with a partition of identity:
$E_{\mathrm{xc}}^{\mathrm{LDA}}(D) \simeq \sum_{k=1}^{M}\left(\sum_{g=1}^{N_{k}} w_{k, g}\left(\left\{\mathbf{R}_{j}\right\}\right) e_{\mathrm{xc}}^{\mathrm{LDA}}\left(\rho\left(\mathbf{R}_{k}+\mathbf{r}_{k, g}\right)\right)\right) \quad$ with $\quad \rho(\mathbf{r})=\sum_{\mu, \nu=1}^{N_{b}} D_{\mu \nu} \chi_{\mu}(\mathbf{r}) \chi_{\nu}(\mathbf{r})$

Atomic orbital basis sets

1. A collection $\left\{\xi_{\mu}^{A}\right\}_{1 \leq \mu \leq n_{A}}$ of n_{A} linearly independent linear combination of gaussian polynomials are associated with each chemical element A of the periodic table: these are the atomic orbitals of A.
2. To perform a calculation on a given chemical system, one builds a basis $\left\{\chi_{\mu}\right\}$ by putting together all the atomic orbitals related to all the atoms of the system.

Example of the water molecule $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
\left\{\chi_{\mu}\right\}=\{ & \xi_{1}^{H}\left(\mathbf{r}-\mathbf{R}_{H_{1}}\right), \cdots, \xi_{n_{H}}^{H}\left(\mathbf{r}-\mathbf{R}_{H_{1}}\right) ; \xi_{1}^{H}\left(\mathbf{r}-\mathbf{R}_{H_{2}}\right), \cdots, \xi_{n_{H}}^{H}\left(\mathbf{r}-\mathbf{R}_{H_{2}}\right) ; \\
& \left.\xi_{1}^{O}\left(\mathbf{r}-\mathbf{R}_{O}\right), \cdots, \xi_{n_{O}}^{O}\left(\mathbf{r}-\mathbf{R}_{O}\right)\right\}
\end{aligned}
$$

where $\mathbf{R}_{H_{1}}, \mathbf{R}_{H_{2}}$ and \mathbf{R}_{O} denote the positions in \mathbb{R}^{3} of the Hydrogen nuclei and of the Oxygen nucleus respectively.

Typically: $N_{b} \sim 2 N$ (small atomic basis set) to $10 N$ (large atomic basis set).

Molecular orbital formulation
For simplicity, the basis $\left\{\chi_{\mu}\right\}_{1 \leq \mu \leq N_{b}}$ is assumed to be orthonormal.

$$
\begin{gathered}
E_{0, \mathcal{X}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}\left(C C^{T}\right), C \in \mathcal{C}\right\} \\
\mathcal{C}=\left\{C \in \mathbb{R}^{N_{b} \times N}, C^{T} C=I_{N}\right\} \quad \text { (Stiefel manifold) } \\
E^{\mathrm{KS}}(D)=\operatorname{Tr}(h D)+\frac{1}{2} \operatorname{Tr}(J(D) D)+E_{\mathrm{xc}}^{\mathrm{LDA}}(D) \\
\uparrow \\
\text { linear } \quad \uparrow \quad \text { quadratic } \quad \text { "small" term }
\end{gathered}
$$

Density matrix formulation
When C varies in the set $\mathcal{C}=\left\{C \in \mathbb{R}^{N_{b} \times N}, C^{T} C=I_{N}\right\}, D=C C^{T}$ spans

$$
\begin{aligned}
\mathcal{P} & =\left\{D \in \mathbb{R}^{N_{b} \times N_{b}}, D=D^{T}, \operatorname{Tr}(D)=N, D^{2}=D\right\} \\
& =\left\{\text { rank- } N \text { orthogonal projectors of } \mathbb{R}^{N_{b} \times N_{b}}\right\} \quad(\text { Grassmann manifold) }
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
E_{0, \mathcal{X}}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}(D), D \in P\right\} \\
E^{\mathrm{KS}}(D)=\underset{\operatorname{Tr}}{\operatorname{Tr}(h D)+\frac{1}{2} \operatorname{Tr}(J(D) D)+E_{\mathrm{xc}}^{\mathrm{LDA}}(D)} \begin{array}{cc}
\uparrow & \uparrow \\
\text { linear } & \text { quadratic }
\end{array} \quad \text { "small" term }
\end{gathered}
$$

Discretized Kohn-Sham equations (general case of a non-orthogonal basis)

$$
\left\{\begin{array}{l}
D=C C^{T}, \quad F=h+J(D)+F_{\mathrm{xc}}^{\mathrm{LDA}}(D) \\
F \Phi_{i}=\varepsilon_{i} S \Phi_{i}, \quad \varepsilon_{1} \leq \cdots \leq \varepsilon_{N} \text { lowest gen. eig. of } F \Phi=\varepsilon S \Phi, \quad \Phi_{i}^{T} S \Phi_{j}=\delta_{i j} \\
C=\left(\Phi_{1}, \cdots, \Phi_{N}\right) \\
\quad D \in \mathbb{R}_{\mathrm{sym}}^{N_{b} \times N_{b}}, \quad F \in \mathbb{R}_{\mathrm{sym}}^{N_{b} \times N_{b}}, \quad \Phi_{i} \in \mathbb{R}^{N_{b}}, \quad C \in \mathbb{R}^{N_{b} \times N}
\end{array}\right.
$$

Solutions to the discretized Kohn-Sham problem can be obtained

- either by solving a constrained optimization problem (on a Stiefel or a Grassmann manifold);
- or by solving the above equations by means of a self-consistent field (SCF) algorithm.

The design of more efficient methods, in particular for very large molecular systems, is still an active field of research.

Kohn-Sham LDA model with periodic boundary conditions (supercell method)
Ω : supercell, \mathcal{R} : direct lattice, \mathcal{R}^{*} : dual lattice, $\mathrm{e}_{\mathbf{K}}(\mathbf{r})=|\Omega|^{-1 / 2} e^{i \mathbf{K} \cdot \mathbf{r}}$

$$
\begin{aligned}
& E_{0}^{\mathrm{KS}}=\inf \left\{E^{\mathrm{KS}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(H_{\#}^{1}(\Omega)^{N}, \int_{\Omega} \phi_{i}(\mathbf{r}) \phi_{j}(\mathbf{r}) d \mathbf{r}=\delta_{i j}\right\}\right. \\
& E^{\mathrm{KS}}(\Phi)=\frac{1}{2} \sum_{i=1}^{N} \int_{\Omega}\left|\nabla \phi_{i}\right|^{2}+\int_{\Omega} \rho_{\Phi} V_{\mathrm{local}}+\sum_{i=1}^{N}\left\langle\phi_{i}\right| V_{\mathrm{nl}}\left|\phi_{i}\right\rangle+J\left(\rho_{\Phi}\right)+E_{\mathrm{xc}}^{\mathrm{LDA}}\left(\rho_{\Phi}\right) \\
& H_{\#}^{1}(\Omega)=\left\{\phi \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right) \mid \phi \mathcal{R} \text {-periodic }\right\} \\
& \rho_{\Phi}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2} \quad J(\rho)=2 \pi \sum_{\mathbf{K} \in \mathcal{R}^{*} \backslash\{0\}} \frac{\left|\widehat{\rho}_{\mathbf{K}}\right|^{2}}{|\mathbf{K}|^{2}} \quad E_{\mathrm{xc}}^{\mathrm{LDA}}(\rho)=\int_{\Omega} e_{\mathrm{xc}}^{\mathrm{LDA}}(\rho(\mathbf{r})) d \mathbf{r}
\end{aligned}
$$

All electron calculations: $N, Z=$ number of electrons / protons in Ω,

$$
V_{\mathrm{nl}}=0, \quad V_{\text {local }}: \mathcal{R} \text {-periodic solution to }-\Delta V_{\text {local }}=4 \pi\left(\rho_{\text {nuc }}^{\text {per }}-Z\right) .
$$

Pseudopotential calculation: $N=$ number of valence electrons in Ω,

$$
V_{\text {local }} \text { and } V_{\mathrm{nl}}: \text { local and nonlocal parts of the pseudopotential. }
$$

Planewave discretization of Kohn-Sham models with pseudopotentials $E_{0}^{\mathrm{KS}} \leq E_{0}^{\mathrm{KS}, E_{\mathrm{c}}}:=\inf \left\{E^{\mathrm{KS}}(\Phi), \Phi=\left(\phi_{1}, \cdots, \phi_{N}\right) \in\left(X_{E_{\mathrm{c}}}\right)^{N}, \int_{\Omega} \phi_{i}(\mathbf{r}) \phi_{j}(\mathbf{r}) d \mathbf{r}=\delta_{i j}\right\}$
$X_{E_{\mathrm{c}}}=\left\{\phi(\mathbf{r})=\sum_{\mathbf{K} \in \mathcal{R}^{*},|\mathbf{K}|^{2} / 2 \leq E_{\mathrm{c}}} \phi_{\mathbf{K}} e_{\mathbf{K}}(\mathbf{r}), \phi_{-\mathbf{K}}=\overline{\phi_{\mathbf{K}}}\right\}, \quad e_{\mathbf{K}}(\mathbf{r})=|\Omega|^{-1 / 2} e^{i \mathbf{K} \cdot \mathbf{r}}$.
Typically: $N_{b} \sim \frac{\sqrt{2}}{6 \pi^{2}}|\Omega| E_{c}^{3 / 2} \sim 100 N$ to $1000 N$ for usual systems/pseudopotentials.
Various strategies can be used to solve the above constrained optimization problem or the associated Euler-Lagrange equations. They all are iterative methods based on computations of matrix-vector products $\widehat{H} \widehat{X}$, where

- $\widehat{\mathbb{H}}$ is the matrix of some periodic Schrödinger operator $H=-\frac{1}{2} \Delta+V_{\text {per }}$ in the Fourier basis $\left(e_{\mathbf{K}}\right)$ of $X_{E_{\mathrm{c}}}$;
$\bullet \mathbb{X}$ is a vector containing the Fourier coefficients of some orbital $\phi \in X_{E_{\mathrm{c}}}$. Such matrix-vector products can be computed in $O\left(N_{b} \log N_{b}\right)$ operators by means of Fast Fourier Transform (FFT).

6 - Advanced methods and current research

Improvements of available DFT models

- Construction of better exchange-correlation functionals
- Multi-reference DFT
- DFT+U
- ...

Many prominent physicists and chemists are working on these issues (Becke, Burke, Langreth, Perdew, Savin, Scuseria, Scheffler, Tkatchenko, Truhlar, Yang, ... among many others).

Very few mathematical works:
Cotar, Friesecke and Klüppelberg, Density Functional Theory and optimal transportation with Coulomb cost, CPAM '13.

Chen and Friesecke, Pair densities in density functional theory, MMS '15.

Advanced numerical algorithms for Kohn-Sham : many works published in both the physics/chemistry and the applied mathematics literatures.

Example: alternatives to diagonalization for localized orbital methods
Given a real symmetric matrix $H \in \mathbb{R}^{n \times n}$ and $\mu \in \mathbb{R}$, compute the density $\operatorname{matrix} D=\mathbb{1}_{(-\infty, \mu]}(H)$.

Naive way to proceed

1. Diagonalize the matrix H in an orthonormal basis

$$
H \Phi_{i}=\varepsilon_{i} \Phi_{i}, \quad \Phi_{i} \in \mathbb{R}^{n}, \quad \Phi_{j}^{T} \Phi_{i}=\delta_{i j}, \quad \varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{n}
$$

2. Compute the density matrix using the formula

$$
D=\mathbb{1}_{(-\infty, \mu]}(H)=\sum_{i \mid \varepsilon_{i} \leq \mu} \Phi_{i} \Phi_{i}^{T}
$$

One possible alternative: make use of the Cauchy formula

$$
D=\frac{1}{2 i \pi} \oint_{\mathcal{C}}(z-H)^{-1} d z
$$

Multiscale models for large systems (2013 Nobel prize in Chemistry)

- QM/MM (quantum mechanics/molecular mechanics)

- QM/PCM (quantum mechanics/polarizable continuum models)

Improvement of numerical algorithms for QM/MM/PCM models: series of work by EC, Lipparini, Mennucci, Maday, Stamm, et al '13-'16

A comprehensive analysis of why (or when) QM/MM work is still missing
H. Chen and C. Ortner. QM/MM methods for crystalline defects. Part I: MMS '16, Part II: MMS '17.

Error estimators

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$

Error estimators

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$
Goal 1: provide error estimates (certification)
Goal 2: minimize the computation cost to obtain the desired accuracy.

Error estimators

Input $y \rightarrow$ Reference model

Total error: $\quad \mathbf{e}=\mathbf{e}_{\mathrm{m}}+\mathbf{e}_{\mathrm{d}}+\mathbf{e}_{\mathrm{a}}+\mathbf{e}_{\mathrm{i}}+\mathbf{e}_{\mathrm{c}}$
Goal 1: provide error estimates (certification)
Goal 2: minimize the computation cost to obtain the desired accuracy.

Implementation error e_{i}

- Human error (bugs): manual/automatic code validation.

Implementation error e_{i}

- Human error (bugs): manual/automatic code validation.
- Finite arithmetic errors (single / double / triple / quadruple precision)

Implementation error e_{i}

- Human error (bugs): manual/automatic code validation.
- Finite arithmetic errors (single / double / triple / quadruple precision):
- Between Jan. 1982 and Nov. 1983, Vancouver stock exchange dropped from 1,000 to 524 instead of going up to 1,098 due to truncation errors.
- Patriot missile failure (Feb. 1991) due to round-off errors: storage of 0.1 on 24 bits only in the internal clock (500 m drift after 100 h).
- Ariane 5 rocket crash (Jun. 1996) due to overflow errors during the conversion of 64-bit floating point numbers into 16-bit signed integers.

Implementation error e_{i}

- Human error (bugs): manual/automatic code validation.
- Finite arithmetic errors (single / double / triple / quadruple precision):
- Between Jan. 1982 and Nov. 1983, Vancouver stock exchange dropped from 1,000 to 524 instead of going up to 1,098 due to truncation errors.
- Patriot missile failure (Feb. 1991) due to round-off errors: storage of 0.1 on 24 bits only in the internal clock (500 m drift after 100 h).
- Ariane 5 rocket crash (Jun. 1996) due to overflow errors during the conversion of 64-bit floating point numbers into 16-bit signed integers.

Computing error \mathbf{e}_{c}
Resiliency will be one of the toughest challenges in future exascale systems. Memory errors contribute more than 40% of the total hardware-related failures and are projected to increase in future exascale systems. The use of error correction codes (ECC) and checkpointing are two effective approaches to fault tolerance. (Li et al. 2011)

Discretization and algorithmic errors for periodic KS models

- Optimal a priori error estimators for Kohn-Sham are available (EC, Chakir, Maday M2AN ' ${ }^{12}$)
- Numerical quadrature errors can be estimated (EC, Chakir, Maday 'J. Sci. Comput. 10)
- A posteriori error estimators and computational load reduction strategies are under development: Lin, Yang et al. (Berkeley), Schneider et al. (Berlin), Zhou et al. (Beijing), our (Paris/Aahren) team (EC, Dusson, Maday, Stamm, Vohralík, J. Comp. Phys. '16)
- k-point sampling on the Brillouin zone for metals (EC, Ehrlacher, Gontier, Levitt, Lombardi, in prep.)
- Construction of optimized pseudopotentials (EC, Mourad CMS '16, Blanc, EC, Dupuy, in prep.)
- Error estimators on energy differences (EC, Dusson, arXiv:1701.04643).

Model error e_{m} : can certified a posteriori error estimators be computed?

Model error e_{m} : can certified a posteriori error estimators be computed?

- Wavefunction methods: yes, at least in principle

Model error e_{m} : can certified a posteriori error estimators be computed?

- Wavefunction methods: yes, at least in principle
- Density functional theory: probably not

Model error e_{m} : can certified a posteriori error estimators be computed?

- Wavefunction methods: yes, at least in principle
- Density functional theory: probably not
- Quantum Monte Carlo methods: maybe

Educated choice of the exchange-correlation potential in DFT

$$
\left\{\begin{array}{l}
\text { ground state density } \rho_{0}^{\left\{\mathbf{R}_{k}\right\}}(\mathbf{r})=\rho_{0}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2} \\
-\frac{1}{2} \Delta \phi_{i}+V_{\rho_{0}}^{\mathrm{KS}} \phi_{i}=\lambda_{i} \phi_{i}, \quad \lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} \\
V_{\rho_{0}}^{\mathrm{KS}}=V_{\rho_{0}}^{\mathrm{H}}+v_{\rho_{0}}^{\mathrm{xc}} \quad v_{\rho_{0}}^{\mathrm{xc}}: \text { exchange-correlation potential } \\
-\Delta V_{\rho_{0}}^{\mathrm{H}}=4 \pi\left(\rho_{0}-\sum_{k=1}^{M} z_{k} \delta_{\mathbf{R}_{k}}\right)
\end{array}\right.
$$

Educated choice of the exchange-correlation potential in DFT

$$
\begin{cases}\text { ground state density } \rho_{0}^{\left\{\mathbf{R}_{k}\right\}}(\mathbf{r})=\rho_{0}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2} \\
-\frac{1}{2} \Delta \phi_{i}+V_{\rho_{0}}^{\mathrm{KS}} \phi_{i}=\lambda_{i} \phi_{i}, \quad \lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots & \begin{array}{r}
\text { Perspective on } \\
\text { Density }
\end{array} \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} & \begin{array}{r}
\text { Functional } \\
\text { Theory }
\end{array} \\
V_{\rho_{0}}^{\mathrm{KS}}=V_{\rho_{0}}^{\mathrm{H}}+v_{\rho_{0}}^{\mathrm{xc}} \\
-\Delta V_{\rho_{0}}^{\mathrm{H}}=4 \pi\left(\rho_{0}-\sum_{k=1}^{M} z_{k} \delta_{\mathbf{R}_{k}}\right) \quad\end{cases}
$$

Educated choice of the exchange-correlation potential in DFT

$$
\begin{aligned}
& \left(\text { ground state density } \rho_{0}^{\left\{\mathbf{R}_{k}\right\}}(\mathbf{r})=\rho_{0}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2}\right. \\
& -\frac{1}{2} \Delta \phi_{i}+V_{\rho_{0}}^{\mathrm{KS}} \phi_{i}=\lambda_{i} \phi_{i}, \quad \lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \\
& \int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} \\
& V_{\rho_{0}}^{\mathrm{KS}}=V_{\rho_{0}}^{\mathrm{H}}+v_{\rho_{0}}^{\mathrm{xc}} \\
& -\Delta V_{\rho_{0}}^{\mathrm{H}}=4 \pi\left(\rho_{0}-\sum_{k=1}^{M} z_{k} \delta_{\mathbf{R}_{k}}\right) \\
& \text { Meron Burke }
\end{aligned}
$$

\# citations of the B3LYP paper (Google Scholar, May. 2016): 64,674

Educated choice of the exchange-correlation potential in DFT

$$
\begin{cases}\text { ground state density } \rho_{0}^{\left\{\mathbf{R}_{k}\right\}}(\mathbf{r})=\rho_{0}(\mathbf{r})=\sum_{i=1}^{N}\left|\phi_{i}(\mathbf{r})\right|^{2} \\
-\frac{1}{2} \Delta \phi_{i}+V_{\rho_{0}}^{\mathrm{KS}} \phi_{i}=\lambda_{i} \phi_{i}, \quad \lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \\
\int_{\mathbb{R}^{3}} \phi_{i} \phi_{j}=\delta_{i j} & \begin{array}{r}
\text { Perspective on } \\
\text { Density }
\end{array} \\
V_{\rho_{0}}^{\mathrm{KS}}=V_{\rho_{0}}^{\mathrm{H}}+v_{\rho_{0}}^{\mathrm{xc}} \\
-\Delta V_{\rho_{0}}^{\mathrm{H}}=4 \pi\left(\rho_{0}-\sum_{k=1}^{M} z_{k} \delta_{\mathbf{R}_{k}}\right) & \begin{array}{r}
\text { Functional } \\
\text { Theory }
\end{array} \\
& \end{cases}
$$

Can machine learning help?

Machine learning in molecular simulation: model selection

Machine learning in molecular simulation: direct computation of QOI

DFT calculations are used to compute the QOI in training and validation sets (Ceder et al '10, Rupp, Tkatchenko, Müller, von Lilienfeld '12,
Burke et al. '12, Csányi et al. '13, Mallat et al. '14, ..., IPAM program '16)

