
Density Functional Theory:
Models and numerical methods

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Beijing, June 7-10, 2017



Introduction 1
.

First-principle molecular simulation is used by thousands of physicists,
chemists, biologists, materials scientists, nanoscientists on a daily basis:

• over 20,000 papers a year and growing;

• about 20% of the resources available in scientific computing centers;

• Kohn and Pople were awarded the 1998 Nobel prize in Chemistry for
their contributions to electronic structure calculation methods
(Density Functional Theory and wavefunction methods).

• Karplus, Levitt and Warshel were awarded the 2013 Nobel prize in
Chemistry for their contributions to multiscale modeling of (bio)molecules.
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Most of these models are completely, or largely, unexplored from mathe-
matical and numerical points of view.

Number of hits (June 2017)

Web of Science MathSciNet % in MathSciNet
"Density Functional Theory" 136,840 342 0.2 %

"fluid dynamics" 50,989 10,752 21%
"Navier-Stokes" 48,412 20,442 42 %

"Boltzmann equation" 12,842 4,829 37%
"Maxwell equations" 6,714 4,004 59 %
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Examples of application

Chemistry Materials science

Molecular biology Nanotechnology
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Internal structure of an atom

In the absence of nuclear reactions,

nuclei can be considered as "elementary particles".



Introduction 6
.

Key observation: a molecular system is nothing but a collection of M
atomic nuclei and N electrons in Coulomb interaction.

Such a system can be described by the laws of quantum mechanics
(many-body Schrödinger equation) and statistical physics.

Example of the water molecule (H2O): M = 3 atomic nuclei (1 oxygen +
2 hydrogens) and N = 10 electrons.

The only parameters of these models are (atomic units)
• a few fundamental constants of physics
~ = 1, me = 1, e = 1, ε0 = (4π)−1,

c ' 137.0359996287515..., kB = 3.16681537...× 10−6

• the charges and masses of the nuclei
zH = 1, zO = 8, mH = 1836.152701..., m16O = 29156.944123...

In principle, it is therefore possible to compute all the properties of any
molecular system from its chemical formula.
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The mathematical analysis of first-principle simulation models and their
numerical simulation are challenging tasks: depending on the model and
on the system, various fields of pure and applied mathematics are involved!

Non−commutative geometry (C*−algebras, ...)

First−principle molecular simulation

Quantum mechanics
Statistical physics
Random media

Variational methods
Spectral theory
Nonlinear PDEs

        and scientific computing

Monte Carlo methods

High−dimensional PDEs 
Multiscale problems

Integral equations
Numerical linear algebra

High−performance computing

Constrained optimization 
Global optimization
Controlability
Optimal control

Partial differential equations         Numerical analysis
   Mathematical physics

      Probability and statistics       Control theory and  optimization

Large deviations

"Pure mathematics"

Group theory

Ergodic theory

Nonlinear eigenvalue problems

Dynamical systems

Algebraic topology (Chern classes, ...)

Big data

Differential geometry (Berry curvature, ...)



Outline of the lectures 8
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Part I: modeling

1. The quantum many-body problem

2. First-principle molecular simulation

3. Density Functional Theory and Kohn-Sham models

4. Infinite systems

Part II: numerical methods

5. Standard discretization methods and algorithms

6. Advanced methods and current research
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First principles of (non-relativistic) quantum mechanics

An isolated quantum system is described by
• a state spaceH (a complex Hilbert space);
• a Hamiltonian H (a self-adjoint operator onH);
• other observables (s.a. op. onH) allowing to connect theory and exper.

The state of the system at time t is completely characterized by a
wavefunction Ψ(t) ∈ H such that ‖Ψ(t)‖H = 1.

Time-dependent Schrödinger equation

i~
dΨ

dt
(t) = HΨ(t)

Time-dependent Schrödinger equation

The steady states are of the form Ψ(t) = f (t)ψ, f (t) ∈ C, ψ ∈ H
Hψ = Eψ, E ∈ R, ‖ψ‖H = 1, f (t) = e−iEt/~
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Quantum mechanics for one-particle systems

Consider a particle of mass m subjected to an external potential Vext:

• state space: H = L2(R3,C) (spin is omitted for simplicity);

• Hamiltonian: H = − ~2

2m
∆ + Vext (self-adjoint operator onH).

|Ψ(t, r)|2: probability density of observing the particle at point r at time tˆ
R3
|Ψ(t, r)|2 dr = ‖Ψ(t)‖2

H = 1.

Time-dependent Schrödinger equation

i~
dΨ

dt
(t) = HΨ(t) −→ i~

∂Ψ

∂t
(t, r) = − ~2

2m
∆Ψ(t, r) + Vext(r)Ψ(t, r)
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Time-independent Schrödinger equation

Hψ = Eψ −→ − ~2

2m
∆ψ(r) + Vext(r)ψ(r) = Eψ(r)

Typical spectrum of the Hamiltonian H = − ~2

2m
∆ + Vext for 1 e− systems

Scattering states (continuous spectrum)
Ground state

Excited states

Ex.: Vext(r) = − e2

4πε0|r|
(Hydrogen atom), σ(H) =

{
−ERyd

n2

}
n∈N∗
∪ [0,+∞[.
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Physical meaning of the discrete energy levels

Example of the hydrogen atom

− ~2

2me
∆Ψ(x)− e2

4πε0|x|
Ψ(x) = EΨ(x)

En = −ERyd

n2
, n ∈ N∗, ERyd =

me

2

(
e2

4πε0~

)2

, λm→n =
8π~c
ERyd

(
1

n2
− 1

m2

)−1

Balmer series (nm): λ6→2 = 410.07, λ5→2 = 433.94, λ4→2 = 486.01, λ3→2 = 656.11
λexp

6→2 = 410.17, λexp
5→2 = 434.05, λexp

4→2 = 486.13, λexp
3→2 = 656.28
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle ’69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L2(Rd).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

LetHp = Span {eigenvectors of H} andHc = H⊥p .
[Ex.: for the Hamiltonian of the hydrogen atom, dim(Hp) = dim(Hc) =∞.]

Let χBR be the characteristic function of the ball BR =
{
r ∈ Rd | |r| < R

}
.

Then

(φ0 ∈ Hp) ⇔ ∀ε > 0, ∃R > 0, ∀t ≥ 0,
∥∥∥(1− χBR)e−itH/~φ0

∥∥∥2

L2
≤ ε;

(φ0 ∈ Hc) ⇔ ∀R > 0, lim
T→+∞

1

T

ˆ T

0

∥∥∥χBRe−itH/~φ0

∥∥∥2

L2
dt = 0.
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle ’69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L2(Rd).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

LetHp = Span {eigenvectors of H} andHc = H⊥p .
[Ex.: for the Hamiltonian of the hydrogen atom, dim(Hp) = dim(Hc) =∞.]

Let χBR be the characteristic function of the ball BR =
{
r ∈ Rd | |r| < R

}
.

Then

(φ0 ∈ Hp) ⇔ ∀ε > 0, ∃R > 0, ∀t ≥ 0,
∥∥∥(1− χBR)e−itH/~φ0

∥∥∥2

L2
≤ ε;

(φ0 ∈ Hc) ⇔ ∀R > 0, lim
T→+∞

1

T

ˆ T

0

∥∥∥χBRe−itH/~φ0

∥∥∥2

L2
dt = 0.

Hp : set of bound states, Hc : set of scattering states.
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Quantum mechanics for two-particle systems

State space: H ⊂ L2(R3,C)⊗ L2(R3,C) ≡ L2(R6,C)

|Ψ(t, r1, r2)|2: probability density of observing at time t the particle 1 at r1

and the particle 2 at r2

Symmetry constraints

• two different particles: H = L2(R3,C)⊗ L2(R3,C)

• two identical bosons (e.g. two C12 nuclei): H = L2(R3,C)⊗s L
2(R3,C)

Ψ(t, r2, r1) = Ψ(t, r1, r2)

• two identical fermions (e.g. two electrons): H = L2(R3,C) ∧ L2(R3,C)

Ψ(t, r2, r1) = −Ψ(t, r1, r2) (Pauli principle)

density ρ(t, r) =

ˆ
R3
|Ψ(t, r, r2)|2 dr2+

ˆ
R3
|Ψ(t, r1, r)|2 dr1 = 2

ˆ
R3
|Ψ(t, r, r2)|2 dr2
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Quantum mechanics for N -particle systems

Consider N particles of masses m1, · · · ,mN subjected to an external
potential Vext(r) and pair-interaction potentials Wij(ri, rj).

• State space: H ⊂ L2(R3,C)⊗ · · · ⊗ L2(R3,C) ≡ L2(R3N ,C)

|Ψ(t, r1, · · · , rN)|2: probability density of observing at time t the particle
1 at r1, the particle 2 at r2, ...

• Time-independent Schrödinger equation

− N∑
i=1

~2

2mi
∆ri +

N∑
i=1

Vext(ri) +
∑

1≤i<j≤N

Wij(ri, rj)

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

−→ 3N-dimensional linear ellipic eigenvalue problem
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Ground state of N non-interacting identical particles of mass m subjected
to an external potential Vext(r)

H = −
N∑
i=1

~2

2m
∆ri +

N∑
i=1

Vext(ri) =

N∑
i=1

hri

hφi = εiφi, ε1 ≤ ε2 ≤ · · · ≤ εN

ˆ
R3
φiφj = δij

h = − ~2

2m
∆ + Vext

ε
F

N=5

0

• Bosonic ground state: ψ(r1, · · · , rN) =

N∏
i=1

φ1(ri), ρ(r) = N |φ1(r)|2

• Fermionic gr. st.: ψ(r1, · · · , rN) =
1√
N !

det(φi(rj)), ρ(r) =

N∑
i=1

|φi(r)|2
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Chemistry Materials science

Molecular biology Nanotechnology
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Key observation

• A molecule is a set of M nuclei and N electrons.
• The state spaceH ⊂ L2(R3(M+N),C) and the Hamiltonian of the molecule

can be deduced from its chemical formula:

H = −
M∑
k=1

1

2mk
∆Rk
−

N∑
i=1

1

2
∆ri−

N∑
i=1

M∑
k=1

zk
|ri −Rk|

+
∑

1≤i<j≤N

1

|ri − rj|
+

∑
1≤k<l≤M

zkzl
|Rk −Rl|

Atomic units: ~ = 1, me = 1, e = 1, 4πε0 = 1.

• This Hamiltonian is free of empirical parameters specific to the system.

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be solved. (Dirac, 1929)
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Ionization energy of Helium (Korobov & Yelkhovsky ’01):

He + hν → He+ + e−

∆ν ∆ E=h

Ground state energy of He

Ground state energy of He
+

ν − 
c

−E (e ) = h 

exp. : 5 945 204 238 MHz (’97)
5 945 204 356 MHz (’98)
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Ionization energy of Helium (Korobov & Yelkhovsky ’01):

He + hν → He+ + e−

∆ν ∆ E=h

Ground state energy of He

Ground state energy of He
+

ν − 
c

−E (e ) = h 

exp. : 5 945 204 238 MHz (’97)
5 945 204 356 MHz (’98)

calc.: 5 945 262 288 MHz

HHe = − 1

2m
∆R −

1

2
∆r1 −

1

2
∆r2 −

2

|r1 −R|
− 2

|r2 −R|
+

1

|r1 − r2|

HHe+ = − 1

2m
∆R −

1

2
∆r1 −

2

|r1 −R|
, m = 7294.29953 · · · a.u.
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Ionization energy of Helium (Korobov & Yelkhovsky ’01):

He + hν → He+ + e−

∆ν ∆ E=h

Ground state energy of He

Ground state energy of He
+

ν − 
c

−E (e ) = h 

exp. : 5 945 204 238 MHz (’97)
5 945 204 356 MHz (’98)

calc.: 5 945 262 288 MHz

HHe = − 1

2m
∆R −

1

2
∆r1 −

1

2
∆r2 −

2

|r1 −R|
− 2

|r2 −R|
+

1

|r1 − r2|
+ Breit terms

HHe+ = − 1

2m
∆R −

1

2
∆r1 −

2

|r1 −R|
+ Breit terms

5 945 204 223 MHz (R.C.)
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Example: computation of some properties of the water molecule (H2O)

A water molecule consists ofM = 3 atomic nuclei (1 oxygen + 2 hydrogens)
and N = 10 electrons in Coulomb interaction.

Such a system can be described by the laws of quantum mechanics
(many-body Schrödinger equation) and statistical physics.

The only parameters of these models are
• a few fundamental constants of physics (atomic units)
~ = 1, me = 1, e = 1, ε0 = (4π)−1,

c ' 137.0359996287515..., kB = 3.16681537...× 10−6

• the charges and masses of the hydrogen and oxygen (16) nuclei
zH = 1, zO = 8, mH = 1836.152701..., m16O = 29156.944123...

Born-Oppenheimer strategy (based on the fact that me/mnuc � 1):
• Step 1: definition of the potential energy surfaces (elec. struct. calc.)
• Step 2: analysis of the potential energy surfaces.
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

V ne
{Rk}(r) = −

M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

V ne
{Rk}(ri) +

∑
1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

Warning: in this lecture, spin is omitted for simplicity
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

V ne
{Rk}(r) = −

M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

V ne
{Rk}(ri) +

∑
1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

∀p ∈ SN , Ψ(rp(1), · · · , rp(N)) = ε(p)Ψ(r1, · · · , rN), (Pauli principle)
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Electronic problem for a given nuclear configuration {Rk}1≤k≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

V ne
{Rk}(r) = −

M∑
k=1

zk
|r−Rk|

−1

2

N∑
i=1

∆ri +

N∑
i=1

V ne
{Rk}(ri) +

∑
1≤i<j≤N

1

|ri − rj|

Ψ(r1, · · · , rN) = E Ψ(r1, · · · , rN)

|Ψ(r1, · · · , rN)|2 probability density of observing electron 1 at r1, electron 2 at r2, ...

∀p ∈ SN , Ψ(rp(1), · · · , rp(N)) = ε(p)Ψ(r1, · · · , rN), (Pauli principle)

‖Ψ‖L2 = 1, ρΨ(r) = N

ˆ
R3(N−1)

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN
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Spectrum of the electronic hamiltonian

H
{Rk}
N = −

N∑
i=1

1

2
∆ri−

N∑
i=1

V ne
{Rk}(ri)+

∑
1≤i<j≤N

1

|ri − rj|
on

N∧
L2(R3,C)

(Pauli principle)

Zhislin’s theorem: ifN ≤
M∑
k=1

zk (neutral or positively charged system), then

σ(H
{Rk}
N ) =

{
E
{Rk}
0 ≤ E

{Rk}
1 ≤ E

{Rk}
2 · · ·

}
∪ [Σ{Rk},+∞).

{R }
k

Excited statesGround state

Essential spectrum

Ε

Σ
0 {R }

k
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Step 1: definition of the potential energy surfaces

Wn(R1, · · · ,RM) = E{Rk}
n +

∑
1≤k<l≤M

zkzl
|Rk −Rl|

0
2

1

W

σ N

k
{R  }

 (H  )

 

W
W
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Step 2: analysis of the potential energy surfaces

0
2

1

W

σ N

k
{R  }

 (H  )

 

W
W

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0



2 - First-principle molecular simulation 25
.

Step 2: analysis of the potential energy surfaces

0
2

1

W

σ N

k
{R  }

 (H  )

 

W
W

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

First-principle molecular dynamics

mk
d2Rk

dt2
(t) = −∇Rk

W0(R1(t), · · · ,RM(t)), 1 ≤ k ≤M

The nuclei behave as point-like classical particle interacting via the effective
M -body potential W0.
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Step 2: analysis of the potential energy surfaces

0
 

 (H  )

W

σ N

k
{R  }

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

Global minima of W0: equilibrium configurations of the system

104.45°

OH

H

95.84 pm
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Step 2: analysis of the potential energy surfaces

0
 

 (H  )

W

σ N

k
{R  }

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

Vibration frequencies (harm. approx.)

Rk(t) = R0
k + yk(t)

mk
d2yk,i
dt2

= −
M∑
l=1

3∑
j=1

∂2W0

∂Rk,i∂Rl,j
(R0)yl,j
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Step 2: analysis of the potential energy surfaces

0
 

 (H  )

W

σ N

k
{R  }

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

Vibration frequencies (harm. approx.)

Rk(t) = R0
k + yk(t)

mk
d2yk,i
dt2

= −
M∑
l=1

3∑
j=1

∂2W0

∂Rk,i∂Rl,j
(R0)yl,j

→ infrared spectrum
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Step 2: analysis of the potential energy surfaces

0
 

W

σ N

k
{R  }

 (H  )

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

Vertical transition energies:
visible spectrum (color)
ultraviolet spectrum
X spectrum
ionization energy
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Step 2: analysis of the potential energy surfaces

0
E

 (H  )

 
aW

σ N

k
{R  }

Born-Oppenheimer approximation
• adiabatic approximation
me/mnuc � 1

• semiclassical approximation
on the nuclear dynamics: ~→ 0

Local minima: (meta)stable states (reactants and products)
Critical points of W0 with Morse index 1: transition states

OH + H → H2O kTST =
Π3N−6
i=1 νRe

i

Π3N−7
i=1 νTS,+

i

e−Ea/kBT (large deviation theory).
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Schrodinger

equation 

electronic 

 

 

Wavefunction methods 

Density functional theory

(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 
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Schrodinger

electronic 

 

 

Wavefunction methods 

Density functional theory

(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

equation 

Kohn-Sham model(
−1

2
∆ + V KS

{Rk}[φ1, · · · , φN ]

)
φi(r) = εiφi(r),

ˆ
R3
φiφj = δij, 1 ≤ i, j ≤ N

−→ system of N nonlinear 3D Schrödinger equations
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Schrodinger

electronic 

 

 

Wavefunction methods 

Density functional theory

(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

equation 

Equilibrium geometry of the water molecule (3 nuclei, 10 electrons)

Minimizers of W0(R1,R2,R3) = w0(rOH1, rOH2, θHOH) 104.45°

OH

H

95.84 pm

Kohn-Sham DFT calculation (scales as N 3 or less)
GGA (PBE)-6-311+G**: 96.90 pm, 104.75◦
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Hohenberg-Kohn splitting of the electronic Hamiltonian

E0 = inf {〈Ψ|HN |Ψ〉, Ψ ∈ WN} , WN =

{
Ψ ∈

N∧
i=1

L2(R3) ∩H1(R3N), ‖Ψ‖L2 = 1

}

HN = H1
N + Vne = H1

N +

N∑
i=1

V (ri)

H1
N = T +Vee = −

N∑
i=1

1

2
∆ri +

∑
1≤i<j≤N

1

|ri − rj|
V (r) = −

M∑
k=1

zk
|r−Rk|

Electronic density

Ψ ∈ WN 7→ ρΨ(r) = N

ˆ
R3(N−1)

|Ψ(r, r2, · · · , rN)|2 dr2 · · · drN
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Levy constrained search approach

E0 = inf
Ψ
〈Ψ|HN |Ψ〉

= inf
Ψ

(
〈Ψ|H1

N |Ψ〉 + 〈Ψ|

(
N∑
i=1

V (ri)

)
|Ψ〉

)
= inf

Ψ

(
〈Ψ|H1

N |Ψ〉 +

ˆ
R3
ρΨV

)
= inf

ρ
inf

Ψ | ρΨ=ρ

(
〈Ψ|H1

N |Ψ〉 +

ˆ
R3
ρΨV

)
= inf

ρ

(
inf

Ψ | ρΨ=ρ
〈Ψ|H1

N |Ψ〉 +

ˆ
R3
ρV

)
= inf

ρ

(
FLL(ρ) +

ˆ
R3
ρV

)
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Levy-Lieb functional

E0 = inf

{
FLL(ρ) +

ˆ
R3
ρV, ρ ∈ RN

}

FLL(ρ) = inf
{
〈Ψ|H1

N |Ψ〉, Ψ ∈ WN s.t. ρΨ = ρ
}

RN = {ρ, ∃Ψ ∈ WN s.t. ρΨ = ρ} =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

ˆ
R3
ρ = N

}

FLL(ρ) is a “universal” functional of the density

Problem: no easy-to-compute expression of FLL(ρ) is known
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Lieb functional

For any v ∈ L3/2(R3) + L∞(R3), we can define

E(v) = inf

{
〈Ψ|H1

N +

N∑
i=1

v(ri)|Ψ〉, Ψ ∈ WN

}
and v 7→ E(v) is a real-valued, concave, continuous function.

It holds (Lieb ’83)

E(v) = inf

{
FL(ρ) +

ˆ
R3
ρv, ρ ∈ L1(R3) ∩ L3(R3)

}
where FL(ρ) is the convex w-l.s.c. function defined on L1(R3) ∩ L3(R3) by

FL(ρ) = sup

{
E(v)−

ˆ
R3
ρv, v ∈ L3/2(R3) + L∞(R3)

}
.
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No explicit expressions of the functionals FL and FLL are known.

Approximations are needed for numerical simulations.

Two classes of approximate functionals are available, built from the exact
functionals of simple reference systems:

• orbital-free models: reference system = homogeneous electron gas

orbital-free functionals are cheap but inaccurate except in a few cases;

• Kohn-Sham models: reference system = N non-interacting electrons

Kohn-Sham functionals are much more accurate, but more expensive.
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In orbital-free models, the density functional is explicit in ρ.

Examples:

• Thomas-Fermi (TF) model

ETF(ρ) = CTF

ˆ
R3
ρ5/3 +

ˆ
R3
ρV +

1

2

ˆ
R3

ˆ
R3

ρ(r) ρ(r′)

|r− r′|
dr dr′

E0 ∼ inf

{
ETF(ρ), ρ ≥ 0, ρ ∈ L1(R3) ∩ L5/3(R3),

ˆ
R3
ρ = N

}
.

• Thomas-Fermi-von Weizsäcker (TFW) model

ETFW(ρ) = CW

ˆ
R3
|∇√ρ|2+CTF

ˆ
R3
ρ5/3+

ˆ
R3
ρV +

1

2

ˆ
R3

ˆ
R3

ρ(r) ρ(r′)

|r− r′|
dr dr′

E0 ∼ inf

{
ETFW(ρ), ρ ≥ 0,

√
ρ ∈ H1(R3),

ˆ
R3
ρ = N

}
.
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Density functional theory for non-interacting electrons

Hamiltonian Levy-Lieb Lieb

Interacting e− H1
N FLL(ρ) FL(ρ)

Non-interacting e− H0
N TLL(ρ) TJ(ρ)

H1
N = T+Vee = −

N∑
i=1

1

2
∆ri+

∑
1≤i<j≤N

1

|ri − rj|
H0
N = T = −

N∑
i=1

1

2
∆ri
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Levy-Lieb approach

TLL(ρ) = inf {〈Ψ|T |Ψ〉, Ψ ∈ WN s.t. ρΨ = ρ}

≤ inf {〈Ψ|T |Ψ〉, Ψ is a Slater determinant s.t. ρΨ = ρ}

= inf

{
N∑
i=1

1

2

ˆ
R3
|∇φi|2, φi ∈ H1(R3),

ˆ
R3
φiφj = δij,

N∑
i=1

|φi|2 = ρ

}
= TKS(ρ).

A Slater determinant (with finite energy) is a wavefunction Ψ of the form

Ψ(r1, · · · , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rN)
· · · · ·
· · · · ·
· · · · ·

φN(r1) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣
, φi ∈ H1(R3),

ˆ
R3
φiφj = δij.
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Kohn-Sham model

1. For N non interacting electrons, the density functional is (approxima-
tively) given by

TKS(ρ) =

{
N∑
i=1

1

2

ˆ
R3
|∇φi|2, φi ∈ H1(R3)

ˆ
R3
φiφj = δij

N∑
i=1

|φi|2 = ρ

}
.

2. For a classical charge distribution of density ρ, the Coulomb interaction
reads

J(ρ)
def
=

1

2

ˆ
R3

ˆ
R3

ρ(x) ρ(y)

|x− y|
dx dy.

3. Kohn and Sham proposed the following decomposition of FLL

FLL(ρ) = TKS(ρ) + J(ρ) + Exc(ρ) where Exc(ρ)
def
= FLL(ρ)−TKS(ρ)−J(ρ).

Exc is called the exchange-correlation functional.
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Exchange-correlation functional

|Exc(ρ)| � J(ρ) and TKS(ρ).

A possible approximation of Exc(ρ) is

ELDA
xc (ρ) =

ˆ
R3
exc(ρ(x)) dx

where exc(ρ̄) is the exchange-correlation energy density in a homogeneous
electron gas of density ρ̄.

−→ Local Density Approximation (LDA)

The function exc : R+ → R is obtained by interpolation of asymptotic
expansions and benchmark Quantum Monte Carlo calculations on the ho-
mogeneous electron gas.
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Rewriting the minimization problem in terms of Φ = (φ1, · · · , φN), one
obtains

E0 ' inf

{
EKS(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

ˆ
R3
φiφj = δij

}

EKS(Φ) =
1

2

N∑
i=1

ˆ
R3
|∇φi|2 +

ˆ
R3
ρΦV

+
1

2

ˆ
R3

ˆ
R3

ρΦ(r) ρΦ(r′)

|r− r′|
dr dr′ +

ˆ
R3
exc(ρΦ(r)) dr

with V (r) = −
M∑
k=1

zk
|r−Rk|

ρΦ(r) =

N∑
i=1

|φi(r)|2.

Existence of solutions for neutral and positively charged systems: Le Bris ’93,
Anantharaman-Cancès ’09.
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Kohn-Sham equations (Euler-Lagrange + invariance + loc. min.)
−1

2
∆φi +WΦφi = εiφi 1 ≤ i ≤ N

ˆ
R3
φiφj = δij 1 ≤ i, j ≤ N.

• In the Hartree-Fock model, the potentialWΦ is nonlocal

WHF
Φ φ =

(
V + ρΦ ?

1

| · |

)
φ−
ˆ
R3

γΦ(·, r′)
| · −r′|

φ(r′) dr′, γΦ(r, r′) =

N∑
i=1

φi(r)φi(r
′)

while it is local in the Kohn-Sham LDA model

WKS−LDA
Φ φ =

(
V + ρΦ ?

1

| · |
+
dexc

dρ
(ρΦ)

)
φ.

• In the Hartree-Fock model, ε1 ≤ ε2 ≤ · · · ≤ εN are the lowest N eigen-
values of −1

2∆ +WΦ, while it is not known whether this property holds
true for the Kohn-Sham LDA model.
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"Improvements" of the LDA: Jacob’s ladder (Perdew)

Hartree (reduced Hartree−Fock) model

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

Heaven Exact exchange−correlation functional

BR89, tauPBE, VSXC, BB95, TPSS, PBS00, LAP, ...

SIC, PW91, BLYP, mPWPW91, PBE, revPBE, G96LYP, HCTH, OPTX, EDF1, ...  

1/2 & 1/2, B3P, B3LYP, PBE0, O3LYP, X3LYP, mPW1PW91, BMK, PWB6K, B1B95, PW6B95, TPSSh, M05, ...

SAOP, ...

Earth

explicit functionals of the Kohn-Sham occupied and unoccupied orbitals

LDA (explicit in ρ(r))

GGA (explicit in ρ(r) and∇ρ(r))

meta-GGA (explicit in ρ(r),∇ρ(r), ∆ρ(r) and τ (r) =
N∑
i=1

|∇φi(r)|2)

explicit functionals of the KS density matrix (ex: hybrid functionals)
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Physical interpretation of FL(ρ)

Mixed states of N -electron systems are described by N -electron density
matrices of the form

Γ =

+∞∑
n=1

pn|Ψn〉〈Ψn|, Ψn ∈
N∧
i=1

L2(R3), 〈Ψm|Ψn〉 = δmn, 0 ≤ pn ≤ 1,

+∞∑
n=1

pn = 1

the density of Γ being given by

ρΓ(r) =

+∞∑
n=1

pnρΨn(r).

Γ is of finite energy if
+∞∑
n=1

pn‖∇Ψn‖2
L2 <∞, its energy being then

Tr (HNΓ) =

+∞∑
n=1

pn〈Ψn|HN |Ψn〉 = Tr
(
H1
NΓ
)

+

ˆ
R3
ρΓV.
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Let us denote by DN the convex set consisting of the N -electron density
matrices of finite energy

{ρ | ∃Γ ∈ DN s.t. ρΓ = ρ} = RN .

Therefore

E0 = inf {Tr (HNΓ) , Γ ∈ DN}

= inf

{
Tr
(
H1
NΓ
)

+

ˆ
R3
ρΓV, Γ ∈ DN

}
= inf

{
inf
{

Tr
(
H1
NΓ
)
, Γ ∈ DN , ρΓ = ρ

}
+

ˆ
R3
ρV, ρ ∈ RN

}
.

It holds that FL(ρ) =

∣∣∣∣ inf
{

Tr
(
H1
NΓ
)
, Γ ∈ DN , ρΓ = ρ

}
if ρ ∈ RN ,

+∞ if ρ /∈ RN ,
and that FL is the convex hull of FLL on the convex setRN .
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One-body reduced density matrices

Let Ψ ∈
N∧
i=1

L2(R3) such that ‖Ψ‖L2 = 1. The (one-body) reduced density

matrix associated with Ψ is the function

γΨ(r, r′) := N

ˆ
R3(N−1)

Ψ(r, r2, · · · , rN) Ψ(r′, r2, · · · , rN) dr2 · · · drN .

Note that ρΨ(r) = γΨ(r, r).

The function γΨ(r, r′) can be considered as the Green kernel of the operator
on L2(R3), also denoted by γΨ, and called the one-body reduced density
operator, defined for all φ ∈ L2(R3) by

(γΨφ)(r) =

ˆ
R3
γΨ(r, r′)φ(r′) dr′.
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The operator γΨ is self-adjoint on L2(R3) and satisfies

0 ≤ γΨ ≤ 1 and Tr(γΨ) = N.

Therefore, γΨ can be diagonalized as follows: there exists an orthonormal
basis (φi)i≥1 of L2(R3) and a non-increasing sequence (ni)i≥1 of real num-
bers such that

γΨ =

+∞∑
i=1

ni|φi〉 〈φi| with 0 ≤ ni ≤ 1 and
+∞∑
i=1

ni = N

The ni and the φi are called respectively the natural occupation numbers
and the natural spin-orbitals of the wavefunction Ψ.

If in addition Ψ is of finite energy, then all the φi are in H1(R3) and

〈Ψ|T |Ψ〉 =
1

2

+∞∑
i=1

ni

ˆ
R3
|∇φi(r)|2 dr = Tr

(
−1

2
∆γΨ

)
.
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Let Γ ∈ DN

Γ =

+∞∑
n=1

pn|Ψn〉〈Ψn|, Ψn ∈
N∧
i=1

L2(R3), 〈Ψm|Ψn〉 = δmn, 0 ≤ pn ≤ 1,

+∞∑
n=1

pn = 1.

The first order reduced density operator associated with Γ is

γΓ =

+∞∑
n=1

pnγΨn. Note that ρΓ(r) = γΓ(r, r).

It holds

γ∗Γ = γΓ, 0 ≤ γΓ ≤ 1, Tr(γΓ) = N, Tr(H0
NΓ) = Tr

(
−1

2
∆γΓ

)
.

Ensemble N -representability of first-order reduced density matrices

CN = {γ | ∃Γ ∈ DN s.t. γΓ = γ}
=
{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}
.
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Lieb approach (Janak functional)

TJ(ρ) = inf
{

Tr(H0
NΓ), Γ ∈ DN s.t. ρΓ = ρ

}
= inf

{
Tr
(
−1

2
∆γΓ

)
, Γ ∈ DN s.t. ρΓ = ρ

}
= inf

{
Tr
(
−1

2
∆γ

)
, γ ∈ CN s.t. ργ = ρ

}
where ργ(r) = γ(r, r)

= inf

{ +∞∑
i=1

1

2
ni

ˆ
R3
|∇φi|2, φi ∈ H1(R3),

ˆ
R3
φiφj = δij,

0 ≤ ni ≤ 1,

+∞∑
i=1

ni|φi|2 = ρ

}
.
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Extended Kohn-Sham LDA model

inf
{
E(γ), γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞

}
E(γ) = Tr

(
−1

2
∆γ

)
+

ˆ
R3
ργV + J(ργ) +

ˆ
R3
exc(ργ), ργ(r) = γ(r, r).

The minimization set CN is convex and any γ ∈ CN can be written as

γ =

+∞∑
i=1

ni|φi〉〈φi|

ˆ
R3
φiφj = δij, 0 ≤ ni ≤ 1,

+∞∑
i=1

ni = N, φi ∈ H1(R3).
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Extended Kohn-Sham LDA equations

γ0 =
∑
i

ni|φi〉〈φi| ρ0(r) =
∑
i

ni|φi(r)|2


Hρ0 φi = εiφiˆ
R3
φiφj = δij

and

∣∣∣∣∣∣
ni = 1 if εi < εF,
0 ≤ ni ≤ 1 if εi = εF,
ni = 0 if εi > εF,

∑
i

ni = N

ε
Fε

F

N=5 N=6

Hρ0 = −1

2
∆ + V + ρ0 ? |r|−1 +

dexc

dρ
(ρ0)



4 - Infinite systems

Periodic 3D system Periodic 2D system

Alloy at finite temperature Amorphous system
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Thermodynamic limit (bulk limit) for perfect crystals

L


ρnuc
L =

∑
R∈Z3∩(−L/2,L/2]3

z m(· −R)

zL3 electrons

−→

∣∣∣∣∣∣∣∣∣∣
E0
L ground state total energy

ρ0
L (unique) ground state density

γ0
L a ground state density matrix
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Thermodynamic limit (bulk limit) for perfect crystals

L


ρnuc
L =

∑
R∈Z3∩(−L/2,L/2]3

z m(· −R)

zL3 electrons

−→

∣∣∣∣∣∣∣∣∣∣
E0
L ground state total energy

ρ0
L (unique) ground state density

γ0
L a ground state density matrix

Theorem (Catto-Le Bris-Lions, ’01). For the Hartree model (KS with no xc)

lim
L→∞

E0
L

L3
= E0

per, ρ0
L

in some sense−→
L→∞

ρ0
per, γ0

L
in some sense−→

L→∞
γ0

per.



4 - Infinite systems 51
.

Periodic Kohn-Sham equations



H0
per = −1

2
∆ + V 0

per + V xc
per

−∆V 0
per = 4π

(
ρnuc

per − ρ0
per

)
, V 0

per Z3-periodic

ρ0
per(r)

formally
= γ0

per(r, r)

V xc
per(r) =

dexc

dρ
(ρ0

per(r)) (LDA)

γ0
per = 1(−∞,εF)(H

0
per),

ˆ
[−1

2 ,
1
2)3
ρ0

per =

ˆ
[−1

2 ,
1
2)3
ρnuc

per
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Periodic Kohn-Sham equations



H0
per = −1

2
∆ + V 0

per + V xc
per

−∆V 0
per = 4π

(
ρnuc

per − ρ0
per

)
, V 0

per Z3-periodic

ρ0
per(r)

formally
= γ0

per(r, r)

V xc
per(r) =

dexc

dρ
(ρ0

per(r)) (LDA)

γ0
per = 1(−∞,εF)(H

0
per),

ˆ
[−1

2 ,
1
2)3
ρ0

per =

ˆ
[−1

2 ,
1
2)3
ρnuc

per

g F

Insulator / Semiconductor

z  = 2

Conduction bands

Band gap

(Fermi sea)

Valence bands

ε 
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Periodic Kohn-Sham equations



H0
per = −1

2
∆ + V 0

per + V xc
per

−∆V 0
per = 4π

(
ρnuc

per − ρ0
per

)
, V 0

per Z3-periodic

ρ0
per(r)

formally
= γ0

per(r, r)

V xc
per(r) =

dexc

dρ
(ρ0

per(r)) (LDA)

γ0
per = 1(−∞,εF)(H

0
per),

ˆ
[−1

2 ,
1
2)3
ρ0

per =

ˆ
[−1

2 ,
1
2)3
ρnuc

per

Valence states

F

(Fermi sea)

z  = 3

         Conductor

Conduction states

ε 
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)

DFT models for a single defect (or a finite number of defects)

• TF: Lieb-Simon (’77), TFW: Catto-Le Bris-Lions (’98)
• Hartree: EC, Deleurence, Lewin (’08), EC, Lewin (’10),

Franck, Lewin, Lieb, Seiringer (’11), EC, Stoltz (’12), Gontier-Lahbabi (’16)
• LDA: EC, Deleurence, Lewin (’08)
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)

DFT models for stationary random distributions of defects

• TFW: Blanc, Le Bris, Lions ’07
• Hartree (short-range interaction only): EC, Lahbabi, Lewin, ’13
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Supercell method for Kohn-Sham simulations in the condensed phase

︸ ︷︷ ︸
Size L



H0
L,per = −1

2
∆ + V 0

L,per + V xc
L,per on L2

per

(
[−L

2
,
L

2
)3

)
−∆V 0

L,per = 4π
(
ρL,nuc

per − ρ0
L,per

)
, V 0

L,per LZ3-periodic

ρ0
L,per(r)

formally
= γ0

L,per(r, r)

γ0
L,per = 1(−∞,εF)(H

0
L,per),

ˆ
[−L2 ,

L
2 )3
ρ0
L,per =

ˆ
[−L2 ,

L
2 )3
ρnuc

per

For infinite, macroscopically homogeneous, systems:

supercell method ∼ representative volume method (RVP) of stochastic homogenization

Converges when L → ∞ for the Hartree model for perfect crystals (⇔
uniform Brillouin zone discretization) and crystals with a single defect.



5 - Standard discretization methods and algorithms

Quantum chemistry Solid state physics/materials science

Finite systems Infinite systems (supercell method)

Gaussian atomic orbitals Planewaves

Some popular AO codes: Some popular PW codes:
Gaussian, Molpro, Q-Chem Abinit, CASTEP, Quantum Espresso, VASP

https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
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Galerkin approximation of the Kohn-Sham LDA model (finite systems)

E0 ' inf

{
EKS(Φ), Φ = (φ1, · · · , φN) ∈ (H1(R3))N ,

ˆ
R3
φiφj = δij

}

EKS(Φ) =
1

2

N∑
i=1

ˆ
R3
|∇φi|2+

ˆ
R3
ρΦV +

1

2

ˆ
R3

ˆ
R3

ρΦ(r) ρΦ(r′)

|r− r′|
dr dr′ +

ˆ
R3
eLDA

xc (ρΦ(r)) dr

with V (r) = −
M∑
k=1

zk
|r−Rk|

ρΦ(r) =

N∑
i=1

|φi(r)|2.

Approximation space: X = Span(χ1, · · · , χNb) ⊂ H1(R3), dim(X ) = Nb.

EKS
0 ≤ EKS

0,X = inf

{
EKS(Φ),Φ = (φ1, · · · , φN) ∈ XN ,

ˆ
R3
φiφj = δij

}

Φ = (φ1, · · · , φN) ∈ XN ⇒ φi(r) =

Nb∑
µ=1

Cµiχµ(r)
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Discretized formulation of the Kohn-Sham model

EKS
0,X = inf

{
EKS(CCT ), C ∈ RNb×N , CTSC = IN

}
EKS(D) = Tr(hD)+

1

2
Tr(J(D)D)+ELDA

xc (D), [J(D)]µν =
∑
κλ

(µν|κλ)Dκλ

Electronic integrals

• Overlap matrix: Sµν =

ˆ
R3
χµχν

• Core Hamiltonian matrix: hµν =
1

2

ˆ
R3
∇χµ·∇χν−

M∑
k=1

zk

ˆ
R3

χµ(r)χν(r)

|r−Rk|
dr

• Two-electron integrals: (µν|κλ) =

ˆ
R3

ˆ
R3

χµ(r)χν(r)χκ(r
′)χλ(r

′)

|r− r′|
dr dr′
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Fundamental remark (Boys 1950): if the χµ are gaussian-polynomials

χµ(r) = p(r) exp(−α|r|2)

then the one-electron integrals

Sµν =

ˆ
R3
χµχν, hµν =

1

2

ˆ
R3
∇χµ · ∇χν +

ˆ
R3
V neχµχν

and the two-electron integrals

(µν|κλ) =

ˆ
R3

ˆ
R3

χµ(r)χν(r)χκ(r
′)χλ(r

′)

|r− r′|
dr dr′

can be computed analytically.

The exchange-correlation energy is computed by numerical quadrature
with a partition of identity:

ELDA
xc (D) '

M∑
k=1

 Nk∑
g=1

wk,g({Rj})eLDA
xc (ρ(Rk + rk,g))

 with ρ(r) =

Nb∑
µ,ν=1

Dµνχµ(r)χν(r)
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Atomic orbital basis sets

1. A collection
{
ξAµ
}

1≤µ≤nA
of nA linearly independent linear combination

of gaussian polynomials are associated with each chemical element A of
the periodic table: these are the atomic orbitals of A.

2. To perform a calculation on a given chemical system, one builds a basis
{χµ} by putting together all the atomic orbitals related to all the atoms
of the system.

Example of the water molecule H2O

{χµ} =
{
ξH1 (r−RH1), · · · , ξ

H
nH

(r−RH1); ξ
H
1 (r−RH2), · · · , ξ

H
nH

(r−RH2);

ξO1 (r−RO), · · · , ξOnO(r−RO)
}
,

where RH1, RH2 and RO denote the positions in R3 of the Hydrogen nuclei
and of the Oxygen nucleus respectively.

Typically: Nb ∼ 2N (small atomic basis set) to 10N (large atomic basis set).



5 - Standard discretization methods and algorithms 59
.

Molecular orbital formulation

For simplicity, the basis {χµ}1≤µ≤Nb
is assumed to be orthonormal.

EKS
0,X = inf

{
EKS(CCT ), C ∈ C

}

C =
{
C ∈ RNb×N , CT C = IN

}
(Stiefel manifold)

EKS(D) = Tr(hD) +
1

2
Tr(J(D)D) + ELDA

xc (D)

↑ ↑ ↑
linear quadratic "small" term
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Density matrix formulation

When C varies in the set C =
{
C ∈ RNb×N , CT C = IN

}
, D = CCT spans

P =
{
D ∈ RNb×Nb, D = DT , Tr(D) = N, D2 = D

}
=
{

rank-N orthogonal projectors of RNb×Nb
}

(Grassmann manifold)

Therefore,
EKS

0,X = inf
{
EKS(D), D ∈ P

}
,

EKS(D) = Tr(hD) +
1

2
Tr(J(D)D) + ELDA

xc (D)

↑ ↑ ↑
linear quadratic "small" term
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Discretized Kohn-Sham equations (general case of a non-orthogonal basis)
D = CCT , F = h + J(D) + F LDA

xc (D)

FΦi = εiSΦi, ε1 ≤ · · · ≤ εN lowest gen. eig. of FΦ = εSΦ, ΦT
i SΦj = δij

C = (Φ1, · · · ,ΦN)

D ∈ RNb×Nb
sym , F ∈ RNb×Nb

sym , Φi ∈ RNb, C ∈ RNb×N

Solutions to the discretized Kohn-Sham problem can be obtained
• either by solving a constrained optimization problem (on a Stiefel or a

Grassmann manifold);
• or by solving the above equations by means of a self-consistent field

(SCF) algorithm.

The design of more efficient methods, in particular for very large molecular
systems, is still an active field of research.



5 - Standard discretization methods and algorithms 62
.

Kohn-Sham LDA model with periodic boundary conditions (supercell method)

Ω: supercell,R: direct lattice,R∗: dual lattice, eK(r) = |Ω|−1/2eiK·r

EKS
0 = inf

{
EKS(Φ), Φ = (φ1, · · · , φN) ∈ (H1

#(Ω)N ,

ˆ
Ω

φi(r)φj(r) dr = δij

}

EKS(Φ) =
1

2

N∑
i=1

ˆ
Ω

|∇φi|2 +

ˆ
Ω

ρΦVlocal +

N∑
i=1

〈φi|Vnl|φi〉 + J(ρΦ) + ELDA
xc (ρΦ)

H1
#(Ω) =

{
φ ∈ H1

loc(R3) | φR-periodic
}

ρΦ(r) =

N∑
i=1

|φi(r)|2 J(ρ) = 2π
∑

K∈R∗\{0}

|ρ̂K|2

|K|2
ELDA

xc (ρ) =

ˆ
Ω

eLDA
xc (ρ(r)) dr

All electron calculations: N , Z = number of electrons / protons in Ω,

Vnl = 0, Vlocal : R-periodic solution to −∆Vlocal = 4π (ρper
nuc − Z) .

Pseudopotential calculation: N= number of valence electrons in Ω,

Vlocal and Vnl : local and nonlocal parts of the pseudopotential.
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Planewave discretization of Kohn-Sham models with pseudopotentials

EKS
0 ≤ EKS,Ec

0 := inf

{
EKS(Φ), Φ = (φ1, · · · , φN) ∈ (XEc)

N ,

ˆ
Ω

φi(r)φj(r) dr = δij

}

XEc =

φ(r) =
∑

K∈R∗, |K|2/2≤Ec

φKeK(r), φ−K = φK

 , eK(r) = |Ω|−1/2eiK·r.

Typically: Nb ∼
√

2

6π2
|Ω|E3/2

c ∼ 100N to 1000N for usual systems/pseudopotentials.

Various strategies can be used to solve the above constrained optimization
problem or the associated Euler-Lagrange equations. They all are iterative
methods based on computations of matrix-vector products ĤX̂, where
• Ĥ is the matrix of some periodic Schrödinger operator H = −1

2∆ + Vper

in the Fourier basis (eK) of XEc;
• X is a vector containing the Fourier coefficients of some orbital φ ∈ XEc.

Such matrix-vector products can be computed inO(Nb logNb) operators by
means of Fast Fourier Transform (FFT).
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Improvements of available DFT models

• Construction of better exchange-correlation functionals
•Multi-reference DFT
• DFT+U
• ...

Many prominent physicists and chemists are working on these issues (Becke,
Burke, Langreth, Perdew, Savin, Scuseria, Scheffler, Tkatchenko, Truhlar,
Yang, ... among many others).

Very few mathematical works:

Cotar, Friesecke and Klüppelberg, Density Functional Theory and optimal
transportation with Coulomb cost, CPAM ’13.

Chen and Friesecke, Pair densities in density functional theory, MMS ’15.
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Advanced numerical algorithms for Kohn-Sham : many works published
in both the physics/chemistry and the applied mathematics literatures.

Example: alternatives to diagonalization for localized orbital methods

Given a real symmetric matrix H ∈ Rn×n and µ ∈ R, compute the density
matrix D = 1(−∞,µ](H).

Naive way to proceed
1. Diagonalize the matrix H in an orthonormal basis

HΦi = εiΦi, Φi ∈ Rn, ΦT
j Φi = δij, ε1 ≤ ε2 ≤ · · · ≤ εn

2. Compute the density matrix using the formula

D = 1(−∞,µ](H) =
∑
i | εi≤µ

ΦiΦ
T
i .

One possible alternative: make use of the Cauchy formula

D =
1

2iπ

˛
C
(z −H)−1 dz.
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Multiscale models for large systems (2013 Nobel prize in Chemistry)

• QM/MM (quantum mechanics/molecular mechanics)

• QM/PCM (quantum mechanics/polarizable continuum models)
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Improvement of numerical algorithms for QM/MM/PCM models: series
of work by EC, Lipparini, Mennucci, Maday, Stamm, et al ’13-’16

QM/MM/PCM simulation (Mennucci et al.)

A comprehensive analysis of why (or when) QM/MM work is still missing

H. Chen and C. Ortner. QM/MM methods for crystalline defects. Part I:
MMS ’16, Part II: MMS ’17.
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Error estimators

Output: computed quantity of interest s’=F(y,z)
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Error estimators
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Goal 1: provide error estimates (certification)
Goal 2: minimize the computation cost to obtain the desired accuracy.
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Implementation error ei

• Human error (bugs): manual/automatic code validation.
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Implementation error ei

• Human error (bugs): manual/automatic code validation.
• Finite arithmetic errors (single / double / triple / quadruple precision):

– Between Jan. 1982 and Nov. 1983, Vancouver stock exchange dropped
from 1,000 to 524 instead of going up to 1,098 due to truncation errors.

– Patriot missile failure (Feb. 1991) due to round-off errors: storage of
0.1 on 24 bits only in the internal clock (500 m drift after 100 h).

– Ariane 5 rocket crash (Jun. 1996) due to overflow errors during the
conversion of 64-bit floating point numbers into 16-bit signed integers.
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Implementation error ei

• Human error (bugs): manual/automatic code validation.
• Finite arithmetic errors (single / double / triple / quadruple precision):

– Between Jan. 1982 and Nov. 1983, Vancouver stock exchange dropped
from 1,000 to 524 instead of going up to 1,098 due to truncation errors.

– Patriot missile failure (Feb. 1991) due to round-off errors: storage of
0.1 on 24 bits only in the internal clock (500 m drift after 100 h).

– Ariane 5 rocket crash (Jun. 1996) due to overflow errors during the
conversion of 64-bit floating point numbers into 16-bit signed integers.

Computing error ec

Resiliency will be one of the toughest challenges in future exascale systems.
Memory errors contribute more than 40% of the total hardware-related failures
and are projected to increase in future exascale systems. The use of error cor-
rection codes (ECC) and checkpointing are two effective approaches to fault
tolerance. (Li et al. 2011)
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Discretization and algorithmic errors for periodic KS models

• Optimal a priori error estimators for Kohn-Sham are available
(EC, Chakir, Maday M2AN ’12)

• Numerical quadrature errors can be estimated
(EC, Chakir, Maday ’J. Sci. Comput. 10)

• A posteriori error estimators and computational load reduction strate-
gies are under development: Lin, Yang et al. (Berkeley), Schneider et
al. (Berlin), Zhou et al. (Beijing), our (Paris/Aahren) team
(EC, Dusson, Maday, Stamm, Vohralík, J. Comp. Phys. ’16)

• k-point sampling on the Brillouin zone for metals
(EC, Ehrlacher, Gontier, Levitt, Lombardi, in prep.)

• Construction of optimized pseudopotentials
(EC, Mourad CMS ’16, Blanc, EC, Dupuy, in prep.)

• Error estimators on energy differences (EC, Dusson, arXiv:1701.04643).
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Model error em: can certified a posteriori error estimators be computed?

Schrodinger

equation 

electronic 

 

 

Wavefunction methods 
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Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 
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Model error em: can certified a posteriori error estimators be computed?

Schrodinger

electronic 

 

 

Wavefunction methods 

Density functional theory

(DFT)

Thomas−Fermi (orbital free) : TF, TFW, ...

Kohn−Sham : Hartree, X   , LDA, GGA, ... α

Single−reference methods: MPn, CI, CC, ...

Multi−reference methods: MCSCF, MRCC,  ...

Hartree−Fock

Variational MC 

Diffusion MC 

Quantum Monte Carlo 

       ¨

N−body 

equation 

•Wavefunction methods: yes, at least in principle
• Density functional theory: probably not
• Quantum Monte Carlo methods: maybe
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Educated choice of the exchange-correlation potential in DFT

ground state density ρ{Rk}
0 (r) = ρ0(r) =

N∑
i=1

|φi(r)|2

−1

2
∆φi + V KS

ρ0
φi = λiφi, λ1 < λ2 ≤ λ3 ≤ · · ·

ˆ
R3
φiφj = δij

V KS
ρ0

= V H
ρ0

+ vxc
ρ0

vxc
ρ0

: exchange-correlation potential

−∆V H
ρ0

= 4π

(
ρ0 −

M∑
k=1

zkδRk

)
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Educated choice of the exchange-correlation potential in DFT

ground state density ρ{Rk}
0 (r) = ρ0(r) =

N∑
i=1

|φi(r)|2

−1

2
∆φi + V KS

ρ0
φi = λiφi, λ1 < λ2 ≤ λ3 ≤ · · ·

ˆ
R3
φiφj = δij

V KS
ρ0

= V H
ρ0

+ vxc
ρ0

−∆V H
ρ0

= 4π

(
ρ0 −

M∑
k=1

zkδRk

)

# citations of the B3LYP paper (Google Scholar, May. 2016): 64,674
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Educated choice of the exchange-correlation potential in DFT

ground state density ρ{Rk}
0 (r) = ρ0(r) =

N∑
i=1

|φi(r)|2

−1

2
∆φi + V KS

ρ0
φi = λiφi, λ1 < λ2 ≤ λ3 ≤ · · ·

ˆ
R3
φiφj = δij
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ρ0

= V H
ρ0
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ρ0

−∆V H
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Can machine learning help?
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Machine learning in molecular simulation: model selection

Machine learning  
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Machine learning in molecular simulation: direct computation of QOI

Machine learning  

m 
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DFT calculations are used to compute the QOI in training and validation sets
(Ceder et al ’10, Rupp, Tkatchenko, Müller, von Lilienfeld ’12,
Burke et al. ’12, Csányi et al. ’13, Mallat et al. ’14, ..., IPAM program ’16)


