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Abstract

Feynman’s ratchet is a microscopic machine in contact with two heat reservoirs, at temperatures

TA and TB, that was proposed by Richard Feynman to illustrate the second law of thermody-

namics. In equilibrium (TA = TB), thermal fluctuations prevent the ratchet from generating

directed motion. When the ratchet is maintained away from equilibrium by a temperature differ-

ence (TA 6= TB), it can operate as a heat engine, rectifying thermal fluctuations to perform work.

While it has attracted much interest, the operation of Feynman’s ratchet as a heat engine has

not been realized experimentally, due to technical challenges. In this work, we realize Feynman’s

ratchet with a colloidal particle in a one dimensional optical trap in contact with two heat reser-

voirs: one is the surrounding water, while the effect of the other reservoir is generated by a novel

feedback mechanism, using the Metropolis algorithm to impose detailed balance. We verify that

the system does not produce work when TA = TB, and that it becomes a microscopic heat engine

when TA 6= TB. We analyze work, heat and entropy production as functions of the temperature

difference and external load. Our experimental realization of Feynman’s ratchet and the Metropo-

lis algorithm can also be used to study the thermodynamics of feedback control and information

processing, the working mechanism of molecular motors, and controllable particle transportation.
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In his Lectures on Physics, Richard Feynman introduced an ingenious model to illustrate

the inviolability of the second law of thermodynamics [1]. A ratchet and pawl are arranged

to permit a wheel to turn in only one direction, and the wheel is attached to a windmill

immersed in a gas. Random collisions of gas molecules against the windmill’s panes would

then seemingly drive systematic rotation in the allowed direction, which could be used to

deliver useful work in violation of the second law. As discussed by Feynman, this violation

does not occur, because thermal fluctuations of the pawl occasionally allow the ratchet to

move in the “forbidden” direction. However, if the pawl is maintained at a temperature that

differs from that of the gas, then the device is indeed able to rectify thermal fluctuations to

produce work – in this case it operates as a microscopic heat engine. This model elegantly

illustrates the idea that thermodynamic laws governing heat and work, originally derived

for macroscopic systems, apply equally well at the nanoscale where fluctuations dominate.

Three essential features are needed to produce directed motion in Feynman’s model: 1)

when the ratchet and pawl are engaged, the potential energy profile must be asymmetric;

2) the device must be in contact with thermal reservoirs at different temperatures; and 3)
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FIG. 1. Schematic drawings of the experiment. A, A sawtooth potential and a flat potential

correspond to the engaged and disengaged modes, respectively, of the ratchet and pawl. We switch

between the two potential modes following the Metropolis algorithm to generate the effects of a

heat reservoir at temperature TA. B, A 780-nm-diameter silica microsphere is trapped in a 1D

optical trap inside a water chamber using a 1064 nm laser. The water is at temperature TB = 296

K. The location of the particle is recorded by a camera for computer feedback control. AOD:

acousto-optic deflector.
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the device must be small enough to undergo Brownian motion driven by thermal noise.

Feynman’s ratchet as a paradigm for rectifying thermal noise has inspired extensive the-

oretical studies [2–8] and related ratchet models [9] have been used to gain insight into

motor proteins [10, 11]. Directed Brownian motion in asymmetric potentials, with a single

heat reservoir, has been demonstrated experimentally in the presence of non-thermal driv-

ing [12–15]. Recently, a macroscopic (10-cm-scale) ratchet driven by mechanical collisions of

4-mm-diameter glass beads was demonstrated [16] However, an experimental realization of

Feynman’s ratchet, which rectifies thermal fluctuations from two heat reservoirs to perform

work, has not been reported to date. A major challenge is to devise a microscopic system

that is in contact with two heat reservoirs at different temperatures, without side effects

such as fluid convection that can smear the effects of thermal fluctuations.

Here we realize Feynman’s two-temperature ratchet and pawl with a colloidal particle

confined in a one-dimensional (1D) optical trap (Fig. 1). The particle’s 1D Brownian mo-

tion emulates the collision-driven rotation of the ratchet, and we use optical tweezers to

generate both flat and sawtooth potentials, simulating respectively the disengaged and en-

gaged modes of the pawl (Fig. 1A). In the flat potential, the colloidal particle moves freely.

The water surrounding the colloidal particle provides a heat reservoir at temperature TB.

The other heat reservoir is generated in silico by using feedback control of the optical tweezer

array [17] to toggle between the disengaged and engaged modes of the pawl, implementing

the Metropolis algorithm [18] as in Ref. [6] to satisfy the detailed balance condition at a

chosen temperature TA (Eq. (1)). Our setup, inspired by theoretical models [3–6], captures

the essential features of Feynman’s original model, with the pawl maintained at one temper-

ature (TA) and the ratchet at another (TB). As described in detail below, both numerical

simulation and experimental data clearly show the influence of the two heat reservoirs on

the operation of the ratchet, in agreement with theoretical analyses [1, 6].

In our experiment, a silica microsphere with a diameter of 780 nm, immersed in deionized

water, undergoes diffusion in a 1D optical trap created with an array of 19 optical tweezers.

The array is generated by an acousto-optic deflector (AOD) controlled by an arbitrary

function generator [17]. By tuning the power of each optical tweezer individually, the trap

potential can be modified to be either flat or sawtooth-shaped. The water, at temperature

TB = 296 K, plays the role of the gas in Feynman’s model, providing thermal noise that drives

the motion of the ratchet. We use computer feedback to generate the effects of a second heat
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FIG. 2. Potential profiles of the 1D optical trap and trajectories of the microsphere. A, Measured

mode 1 (red) and mode 2 (blue) potential profiles at room temperature TB = 296 K. Black lines

indicate the fitted linear potentials used in numerical simulations. The asymmetry in mode 2 is

about 1:3. B-D, 50 individual trajectories (thin lines) and the average trajectory (thick blue line)

of the microsphere when the second heat reservoir is at temperature TA = 30 K (B), TA = 296 K

(C), and TA = 3000 K (D). The average displacement of the particle at 60 s is 〈∆x〉 = 2.1± 0.6µm

in B, 〈∆x〉=−0.1± 0.9µm in C, and 〈∆x〉=−4.5± 0.9µm in D.

reservoir, at temperature TA, that drives the pawl as it switches between its two modes: (1)

disengaged and (2) engaged. Letting U1(x) and U2(x) denote the potential energies of these

modes as functions of the particle location x, we generate attempted switches between modes

at a rate Γ, and each such attempt is accepted with a probability given by the Metropolis

algorithm [6, 18]:

Pswitch(x) = min[1, exp(−∆E(x)/kBTA)], (1)

where kB is Boltzmann’s constant, and ∆E(x) = Uj(x) − Ui(x) for an attempted switch

from mode i to mode j.

By enforcing the detailed balance condition, Eq. 1 ensures that the toggling between

the two modes consistently reflects the exchange of energy with a thermal reservoir at

temperature TA. When we set TA = TB the system relaxes to equilibrium, but when TA 6= TB

we obtain a non-equilibrium steady state in which there is a net flow of energy between the

system, the two reservoirs, and (as described later) an external work load.
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To gain insight, we consider a simple model that couples the diffusive motion of the

Brownian particle in the 1D trap to the stochastic switching between the engaged and

disengaged potential modes. Letting Pi(x, t) denote the joint probability density to find

the particle at position x and the potential in mode i ∈ {1, 2} at time t, we construct the

reaction-diffusion equation

∂Pi(x, t)

∂t
=
∂

∂x

[
U ′i(x)

γ
Pi(x, t)

]
+D

∂2Pi(x, t)

∂x2

+kji(x)Pj(x, t)− kij(x)Pi(x, t), (2)

where γ is the Stokes friction coefficient, D = kBTB/γ the diffusion constant, and kij (kji)(i 6=

j) the switching rate from potential mode i(j) to j(i). This rate is the product of a constant

attempt rate, Γ, and the Metropolis acceptance probability, Eq. (1):

kij(x) = Γ min

[
1, exp

(
−Uj(x)− Ui(x)

kBTA

)]
, (3)

The total particle probability distribution is P1(x, t) + P2(x, t).

To implement the ratchet dynamics, we first trap a silica microsphere with a single optical

tweezer and position it near the middle of the trap, which corresponds to the potential

minimum at the center of mode 2. The optical tweezer array is then turned on at mode 2,

and we follow the diffusion of the microsphere as the potential switches between modes as

described earlier (and in Methods).

Figs. 2B, 2C, and 2D show 60-s trajectories of the particle without external load for

different heat reservoir temperatures TA. The light lines display individual trajectories, and

the thick blue lines are averages over these trajectories. We interpret positive displacements

of the particle as clockwise rotation of the mechanical ratchet, and negative displacements

as counter-clockwise rotation. As seen in Fig. 2C, the average final displacement of the

particle converges essentially to zero, 〈∆x〉 = −0.1± 0.9µm, when the temperatures of the

two reservoirs are equal (TA = TB = 296K) even though the potential is asymmetric. This

experimentally verifies Feynman’s prediction that the ratchet does not produce perpetual

motion, as clockwise rotations are cancelled by counter-clockwise rotations, on average.

When TA = 30K (< TB), the average final position of the microsphere is 〈∆x〉 = 2.1±0.6µm,

indicating net clockwise rotation of the ratchet. When TA = 3000K (> TB), the average final

position is observed to be 〈∆x〉 = −4.5 ± 0.9µm, corresponding to net counter-clockwise

rotation. These results demonstrate that a temperature difference TB − TA can give rise to
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FIG. 3. Average velocity of the microsphere under different external loads at different temperatures

TA. Blue squares, red circles and black triangles represent results with potential slopes of −0.05, 0

and 0.14 kBTB/µm respectively. The added slope to the original potential represents the external

load. Every experimental data point represents the result of an average of 50 repetitions. Solid

lines are simulation results. The vertical dashed line indicates TB = 296 K.

unidirectional motion via the rectification of thermal noise [7]. We now investigate whether

this motion can be harnesses to perform work against an external load.

To apply an effective external load to the ratchet, a slight linear slope f is added to

the potentials. Fig. 3 shows the observed average particle velocity as a function of pawl

temperature TA, for f = −0.05kBTB/µm, f = 0 and f = 0.14kBTB/µm, corresponding to

positive, zero and negative external loads, respectively. Each experimental data point is

calculated from fifty 60-s trajectories. The lines show numerical simulation results, with

each situation simulated over 5 × 104 times to achieve high accuracy. In these simulations

we use the overdamped Langevin equation ẋ = − 1
γ
∂U
∂x

+ ξ(t), where ξ(t) is Gaussian random

force satisfying 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2kBTB
γ

δ(t − t′). The simulation time step is 2 ms.

The simulations are performed with the same procedure as the experiment, described earlier.

The simulation and experimental results show good agreement over a wide range of TA (Fig.

3).

By realizing an external load, we can interpret our system as a microscopic heat engine.

The work produced by the engine is given by the product of the slope and the final displace-

ment of the particle W = f∆x. In the case of a positive external load (f < 0), data points

in Fig. 3 with negative average velocity correspond to positive average work performed by
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FIG. 4. Work, heat, and entropy production of Feynman’s ratchet. A, Extracted work values when

the added potential slope is −0.05 kBTB/µm (blue squares), 0 kBTB/µm (red circles) and 0.14

kBTB/µm (black triangles). Error bars show the uncertainty of the average. B, Heat absorbed

from reservoir A (red circles) and B (blue squares) in the presence of −0.05 kBTB/µm slope

is calculated for each trajectory. Each data point shows the average heat calculated from 50

experimental trajectories. Error bars indicating the uncertainty are smaller than the symbols.

Solid lines are simulation results. Dashed vertical line indicates TB = 296K. C, The numerically

calculated work map of Feynman’s ratchet with representative points corresponding to Fig. 3 and

Fig. 4A. The color shaded area is the heat engine regime where the simulated work is positive. D,

average entropy production in 60 s as a function of TA.

the engine. Conversely, in the negative loading case (f > 0), data points in Fig. 3 having

positive average velocity correspond to positive average work performed by the engine.

The thermodynamic operation of our system as a heat engine is further illustrated in

Fig. 4. In Fig. 4A we plot the average work as a function of TA, with the points labeled

by circled integers indicating the parameters for which the system generates positive work.

For our parameter choices, the greatest observed amount of work extracted in 60 s is 0.14

kBTB when f = −0.05kBTB/µm, and 0.16 kBTB when f = 0.14kBTB/µm. Recall that in
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the absence of external load, our system generates positive velocities when TA < TB and

negative ones when TA > TB (Fig. 2), suggesting that in these situations it might be able

to perform work when f > 0 and f < 0, respectively. The points corresponding to 〈W 〉 > 0

in Fig. 4A confirm this expectation. (There is a minor exception when f = −0.05kBTB/µm

and TA = 500K, where the experimental uncertainty is too large to observe the very small

predicted positive work.) Similarly, in the phase diagram shown in Fig. 4C, we see that the

system acts as a heat engine (i.e. generates positive work) only when the sign of TA− TB is

opposite to the sign of f .

Changes in the potential energy of the particle due to diffusion are associated with heat

exchange with reservoir B, and changes in its potential energy during switches between the

two modes are associated with heat exchange with reservoir A. For each trajectory, we can

thus keep track of the heat absorbed by the system from the two reservoirs, QB and QA.

For the case of positive load, Fig. 4B plots the average values of these quantities. These

data show that the system absorbs energy (Q > 0) from the hotter reservoir and releases

energy (Q < 0) into the colder reservoir, in agreement with expectations. We have also

computed the average entropy production 〈dS〉 = − 〈QA〉
TA
− 〈QB〉

TB
, shown in Fig. 4D. As

expected, 〈dS〉 = 0 when TA = TB as the system is then in equilibrium, but 〈dS〉 > 0 when

TA 6= TB, in agreement with the second law. In our model, most of the energy absorbed from

the hot reservoir is delivered to the cold reservoir, with only a very small portion converted

to work – this explains the observation that the entropy production is largely independent

of external load, as seen in Fig. 4D.

Fig. 4 shows agreement between experiments (points) and simulations (lines), and demon-

strates the operation of Feynman’s ratchet as an engine that rectifies thermal fluctuations

to perform work. It is interesting to consider the thermodynamic efficiency of the engine,

η = 〈W 〉
〈Qhigh〉 , where Qhigh denotes the heat from the reservoir with a higher temperature. Al-

though Feynman suggested that his ratchet could achieve Carnot efficiency [1], later authors

argued that his analysis was incorrect [3–5]. The efficiency that we measured experimentally

is η = 0.0015 for the data point labeled by a circled “5” in Fig. 4A, which is much lower

than the corresponding Carnot efficiency ηC = 0.9, in agreement with the conclusions of

Refs. [3–5]. Feynman’s ratchet cannot achieve Carnot efficiency, as it is in contact with two

heat reservoirs simultaneously and generates work by continuously rectifying fluctuations in

a nonequilibrium steady state [3]. This mode of operation is fundamentally different [4, 24]
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from the thermodynamic cycle of reversible expansion and compression that characterizes a

Carnot engine. We note that micron-sized heat engines that operate in cycles have recently

been implemented in experiments using colloidal particles [21–24].

In conclusion, by combining the Metropolis algorithm with feedback control, we have

realized Feynman’s two-temperature ratchet-and-pawl model using a silica microsphere con-

fined in a computer controlled one dimensional optical trap. We study the behavior of the

ratchet over a range of temperatures and external loads, demonstrating that it rectifies ther-

mal fluctuations to generate work while obeying the thermodynamic laws originally derived

for macroscopic heat engines operating in cycles. When the temperatures of the two heat

reservoirs are equal, we find no unidirectional average drift of the particle, in agreement

with the second law of thermodynamics. When the temperatures differ, we demonstrate

that thermal fluctuations can be rectified by the ratchet to generate work. Our system

provides a versatile testbed for studying the nonequilibrium thermodynamics of microscopic

heat engines and molecular motors [7, 11, 25]. For instance, multiple heat reservoirs can

be mimicked by using a position-dependent TA(x) in the Metropolis algorithm. Moreover,

although we have used feedback control to implement an effective heat bath, in an alter-

native scenario feedback control could be used to mimic the operation of Maxwell’s demon

[26], and thus to investigate issues related to the thermodynamics of information processing

[26–30]. Our study may also have potential applications in particle transportation [7] and

separation [19] induced by Brownian motion in asymmetric potential.

METHODS

The potentials U1(x) and U2(x) are determined from the measured equilibrium distribu-

tion of the particle in each mode. We fix the 1D trap in a particular mode and we track

the Brownian motion of the silica microsphere in the trap, recording its position every 5 ms.

After more than 5×105 data points are collected, the potential profile is extracted using the

equation U(x) = −kBTB ln[N(x)/Ntotal], where N(x) is the number of count at each point

and Ntotal is the total count. The position x is discretized in bins of 52 nm corresponding

to the pixel size of our camera. The measured flat and sawtooth potentials are shown in

Fig. 2A. The depth (from trough to peak) of the sawtooth potential U2(x) is about 4.8

kBTB. The sawtooth potential is described by an asymmetry ratio of approximately 1:3 (see
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Fig. 2A); this is a key parameter for thermal ratchets [20]. The flat potential U1(x) has a

standard deviation of about 0.15 kBTB, which is small enough for the silica microsphere to

diffuse freely. After measuring the potentials, we fit U1(x) with a straight line and U2(x)

with an ideal sawtooth potential (Fig. 2A). These fitted smooth potentials were used in our

numerical simulations to avoid the statistical noise in the measurements.

To implement the ratchet dynamics, the position of the microsphere is recorded every 5

ms using a complementary metal-oxide semiconductor (CMOS) camera (Fig. 1B). Every

200 ms (this time interval is equal to 1/Γ), an attempt to switch modes is made, and is

accepted with the probability given by Eq. (1). In our experiment, the sawtooth potential

has finite length. To mimic the infinite nature of a rotating ratchet, the particle is dragged

back to the trap center whenever it reaches one of the potential minima located on both

ends.
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