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Introduction

Two Lattice Models

Heisenberg S = 1/2 XXX chain

H = J
N∑

i=1

Si · Si+1 = J
N∑

i=1

[
Sz
i Sz

i+1 +
1

2

(
S+
i S−i+1 + S−i S+

i+1

)]

Hubbard model
H = −t

∑

〈ij〉σ
c†iσcjσ + U

∑

i

ni↑ni↓
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Introduction

A 16× 16 Matrix (Two-Site Hubbard Model)Matrix

2
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Introduction

Why Use Exact Diagonalization?

Advantages:
Robust, unbiased and completely versatile - almost anything can be
calculated!

There are models which are not easy to be accessed via other methods, e.g.,
frustrated magnets.

Tiny error - numerical precision.

Computational effort can be reduced by exploiting symmetries.

Physical information about eigenstates.

Especially useful if you want to get a maximum of physical information out of a
finite system

Shortages:
Expensive! The Hilbert space grows exponentially with the system size.

Finite size effect. Sometimes hard to do scaling.
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Introduction

Illustration I: Heisenberg Chain

C(r) = ⇥Si · Si+r⇤(�1)r

Letʼs look at the (staggered) spin correlation function

Spin correlations in the Heisenberg chain

versus the distance r and at r=N/2 versus system size N

Theory (bosonization conformal field theory) predicts (for large r, N)

C(r) � ln1/2(r/r0)

r

Plausible based on N up to 32

• other methods for larger N

Power-law correlations are 

a sign of a “critical” state; 

at the boundary between

• ordered (antiferromagnetic) 

• disordered (spin liquid) 

Spin correlations C(r) = 〈Si ·Si+r 〉 for the Heisenberg chain. CFT prediction: (−1)rC(r) ∝
ln1/2 (r/r0) /r for large r .
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Introduction

Illustration II: Heisenberg Chain with Frustrations

= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =

N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states

|�A� = |(1, 2)(3, 4)(5, 6) · · · �
|�B� = |(1, N)(3, 2)(5, 4) · · · �

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2
It is not hard to show that these are

eigenstates of H (we will do later)

The system has this kind of order (with fluctuations, no exact solution)

for all J2/J1>0.2411..... This is a quantum phase transition between

• a critical state

• a valence-bond-solid (VBS) state

The symmetry is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤ + |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤

J1-J2 model.

= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =
N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states

|�A� = |(1, 2)(3, 4)(5, 6) · · · �
|�B� = |(1, N)(3, 2)(5, 4) · · · �

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2
It is not hard to show that these are

eigenstates of H (we will do later)

The system has this kind of order (with fluctuations, no exact solution)

for all J2/J1>0.2411..... This is a quantum phase transition between

• a critical state

• a valence-bond-solid (VBS) state

The symmetry is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤ + |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤

Valence-bond-solid (VBS) states.

H =
N∑

i=1

[J1Si · Si+1 + J2Si · Si+2]

g := J2/J1

gc ≈ 0.2411: g < gc , AFM,
quasi-long range; g > gc , VBS.

Majumdar-Ghosh point:
g = 1/2, with VBS as the exact
(two-fold) ground state

Hantao Lu (LZU) Time-Dependent Lanczos CSRC Workshop 17-21/06/2019 8 / 46



Introduction

Dimer correlations for VBS

D(r) = 〈BiBi+r 〉 = 〈(Si · Si+1) (Si+r · Si+r+1)〉

= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =
N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states

|�A� = |(1, 2)(3, 4)(5, 6) · · · �
|�B� = |(1, N)(3, 2)(5, 4) · · · �

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2
It is not hard to show that these are

eigenstates of H (we will do later)

The system has this kind of order (with fluctuations, no exact solution)

for all J2/J1>0.2411..... This is a quantum phase transition between

• a critical state

• a valence-bond-solid (VBS) state

The symmetry is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤ + |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤

The VBS state can be detected in finite systems using “dimer” correlations

D(r) = �BiBi+r⇥ = �(Si · Si+1)(Si+r · Si+1+r)⇥

It is not easy to detect the transition this way 

• much larger systems are needed for observing a sharp transition

• other properties can be used to accurately determine the critical point gc

Results from Lanczos diagonaization; different coupling ratios g=J2/J1

It is not easy to detect the transition in this way. Seems much larger systems are
needed.
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Introduction

Determining the transition point using level crossings

Lowest excitation for the Heisenberg chain
(g = 0) is a triplet

I this can be expected for all g < gc

The VBS state is two-fold degenerate for
infinite N

I and for any N at g = 1/2
(Majumdar-Ghosh point)

I these two states are singlets
I gap between them closes exponentially as

N →∞
I the lowest excitation is the second singlet

Determining the transition point using level crossings

Lowest excitation for the g=0 Heisenberg chain is a triplet

• this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N 

• and for any N at g=1/2

• these two states are singlets

• gap between them closes exponentially as N→∞

• the lowest excitation is the second singlet

|�0⇤ ⇥ |�A⇤ + |�B⇤
|�1⇤ ⇥ |�A⇤ � |�B⇤

The two lowest excited state should cross at gc

Extrapolating point for different N up to 32 gives gc=0.2411674(2)

N = 16

Determining the transition point using level crossings

Lowest excitation for the g=0 Heisenberg chain is a triplet

• this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N 

• and for any N at g=1/2
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|�0⇤ ⇥ |�A⇤ + |�B⇤
|�1⇤ ⇥ |�A⇤ � |�B⇤
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N = 16

The two lowest excited states should cross at gc .

Extrapolating point for different N up to 32 gives gc = 0.2411674(2).
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Some Ingredients in ED Basis Representation

Representation of Many-Body States

Mapping to (binary) integers:

Spin-1/2 system
I The basis of Hilbert space

| ↑〉 ⊗ . . .⊗ | ↓〉

I Three-site system (size 23 = 8)

| ↓↓↓〉 = |000〉 0

| ↓↓↑〉 = |001〉 1

| ↓↑↓〉 = |010〉 2

| ↓↑↑〉 = |011〉 3

| ↑↓↓〉 = |100〉 4

| ↑↓↑〉 = |101〉 5

| ↑↑↓〉 = |110〉 6

| ↑↑↑〉 = |111〉 7

Hubbard model
I Four configuration for one site

|0〉 | ↑〉 | ↓〉 | ↑↓〉

One site with two bits
I Two-site system (size 42 = 16)

e.g., N = 2 and Sz = 0,N  �� and Sz  �0

` Declare a matrix A(���)

np
0101

np
1001

np
0110

np
1010

→  Decimal

5
6
9

10
→  Binary

States   Basis  

10)4(
9)3(
6)2(
5)1(

°
°
°

¿

°
°
°

¾

½

o
o
o
o

A
A
A
A

Site 0Site 1

58
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Some Ingredients in ED Hamiltonian Matrix

Obtain Hamiltonian Matrix
Implementing bit-level operation

Spin-1/2 system

H = J
N∑
i=1

[
Sz
i S

z
i+1 +

1

2

(
S+
i S−i+1 + S−i S+

i+1

)]

spin flip bit operation, e.g.

|01〉 ∧(XOR) |11〉−−−−−−−−→ |10〉The Hamiltonian matrix
` The Hamiltonian in the given basis is

¸
¸
¸
¸
¸
¸
¸
¸
¸
¸
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¸
¸
¸
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¸
¸
¸
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¨

©
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�

 

nnn

nnp

npn

npp

pnn

pnp

ppn

ppp

2

0
2

22
0

22

0000
2

000
2

00
22

2
0

2

J

J

JJJJ

J

JJJ

J

J

H

40

Hubbard model

H = −t
∑
〈ij〉σ

c†iσciσ + U
∑
i

ni↑ni↓

bit operation, e.g.

|A〉↓& |B〉↑
# of ’1’−−−−→ U termB. Electron-electron interaction

` Two-site case

)()( 110001100110 pnpnp
�
pp

�
pn

�
nn

�
n ������ � nnnnUcccccccctHHH Ut
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Some Ingredients in ED Symmetries

Using Good Quantum Numbers

Spin-1/2 system

H = J
N∑
i=1

[
Sz
i S

z
i+1 +

1

2

(
S+
i S−i+1 + S−i S+

i+1

)]

quantum number: Mz =
∑

i Sz
i

Hubbard model

H = −t
∑
〈ij〉σ

c†iσciσ + U
∑
i

ni↑ni↓

quantum numbers: N and Sz

Magnetization
` The Hamiltonian becomes
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The Block Diagonal Structure
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Magnetization
` The Hamiltonian becomes
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Some Ingredients in ED Symmetries

Symmetries in ED

Given a group G , [H,G ] = 0
I Basis can be regrouped according to different representations of G
I Different representations can be labeled (e.g., by quantum numbers)
I H is block diagonal (Hilbert space can be divided)

The inclusion of symmetries in an ED code has two major advantages:
I Quantum number resolved energies and states
I Reduction of the Hilbert space to be diagonalized

Some examples:
I U(1) related symmetries

F Conservation of particle numbers (N, U(1) gauge)
F Conservation of total Sz (Mz ) (O(2) symmetry)

I Spatial symmetry groups
F Point group (in general non-abelian)
F Translational symmetry (abelian, therefore 1D irreducible representations,

branded with momentum k)
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I U(1) related symmetries

F Conservation of particle numbers (N, U(1) gauge)
F Conservation of total Sz (Mz ) (O(2) symmetry)

I Spatial symmetry groups
F Point group (in general non-abelian)
F Translational symmetry (abelian, therefore 1D irreducible representations,

branded with momentum k)
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Some Ingredients in ED Symmetries

Example: Translational Symmetry

A state with momentum k can be constructed from any representative state |a〉 as
(suppose the lattice size is N)

|a(k)〉 =
1√
Na

N−1∑

r=0

e−ikr T̂ r |a〉
4-site examples
(0011)→ (0110) (1100) (1001)
(0101)→ (1010)(

T̂ |a(k)〉 = T̂
1√
Na

N−1∑

r=0

e−ikr T̂ r |a〉 = e ik |a(k)〉, i.e. momentum is k

)

Matrix elements

H|a(k)〉 =
N∑

j=0

hj
ae−iklj

√
Nbj

Na
|bj(k)〉

The Hamiltonian matrix is block diagonal for different k . Each block size is
reduced by ∼ 1/N, compared with the original size Dtot.

For more details, see

Anders W. Sandvik, “Computational Studies of Quantum Spin Systems”, arXiv:1101.3281.
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Some Ingredients in ED Hamiltonian Matrix

Hamiltonian Matrix

Matrix recalculation on the fly (matrix-free)

Hubbard model

Sparse matrix

e.g., short-range interaction

Dense matrix

ED in momentum space formulation & Quantum Hall problems
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Some Ingredients in ED Hamiltonian Matrix

Sparse Matrix Storage

Storage medium: RAM, hard disk

Format:
I 2D array: H[i ][j ]
I Sparse matrix

For example (in column-style)

Matrix
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H

2000000000000000
00000000000000
00000000000000
0000000000000
00000000000000
0000000000000000
00000000000000
000000000000000
00000000000000
00000000000000
0000000000000000
000000000000000
0000000000000
000000000000000
000000000000000
0000000000000000

Only nonzero elements are stored. We
need three arrays:

H, for nonzero elements
H[0] = −t, H[1] = −t, H[2] = U, . . .

BlockNo, the initiate position in H
for each column
BlockNo[0] = 0, BlockNo[1] =

0, BlockNo[2] = 1, BlockNo[3] = 2, . . .

Bra-state Nf, for final states
Nf[0] = 4, Nf[1] = 8, Nf[2] = 3, . . .
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Some Ingredients in ED Diagonalization Routines

Outline

1 Introduction

2 Some Ingredients in ED
Basis Representation
Hamiltonian Matrix
Symmetries
Hamiltonian Matrix
Diagonalization Routines

3 Lanczos Algorithm
Basis of Lanczos
Loss of Orthogonality and Ghosts

4 Miscellaneous Applications
Green’s Function
Finite Temperature Lanczos Methods
Time-Dependent Lanczos

Hantao Lu (LZU) Time-Dependent Lanczos CSRC Workshop 17-21/06/2019 23 / 46



Some Ingredients in ED Diagonalization Routines

Routines

If H is dense or system small enough (thousand or several ten thousands),
I Use

F Jacobi
F Householder
F LAPACK
F . . .

I All these apply orthogonal transformations to H until tridiagonal form, then
quickly diagonalized.

I Full diagonalization

If H is sparse, huge, and only a few low-lying states are required,
I Use

F ARPACK
F IETL/ALPS
F DiagHam
F . . .

I These are iterative solvers based on variants of Lanczos algorithm.
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Lanczos Algorithm Basis of Lanczos
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Lanczos Algorithm Basis of Lanczos

Basis of Lanczos

Krylov space
K = span{|φ0〉,H|φ0〉, . . . ,HM |φ0〉, . . .}

Key message: In the iterative Krylov space, the H matrix is in a tridiagonal form.

H =




a0 b1 0 . . .
b1 a1 b2 . . .
0 b2 a2 . . .
...

...
...

. . .




C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
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Lanczos Algorithm Basis of Lanczos

Simple Illustration
Start from a state |φ0〉. Suppose〈φ0|φ0〉 = 1 already, then a0 = 〈φ0|H|φ0〉. Construct

|φ′1〉 = H|φ0〉 − |φ0〉〈φ0|H|φ0〉 = H|φ0〉 − a0|φ0〉, (1)

where |φ′1〉 can be regarded as, geometrically, the component of H|φ0〉 perpendicular to |φ0〉.
Then it’s easy to see that

〈φ′1|φ′1〉 = 〈φ0|H|φ′1〉 := b2
1 . (2)

For normalized |φ1〉, b1 = 〈φ0|H|φ1〉, and a1 = 〈φ1|H|φ1〉.
Go ahead, we have

|φ′2〉 = H|φ1〉 − |φ1〉〈φ1|H|φ1〉 − |φ0〉〈φ0|H|φ1〉 = H|φ1〉 − a1|φ1〉 − b1|φ0〉. (3)

The orthogonality of |φ′2〉 with |φ1〉,|φ0〉 has already been guaranteed. And similarly to Eq. (2),

〈φ′2|φ′2〉 = 〈φ1|H|φ′2〉 := b2
2 , (4)

so b2 = 〈φ1|H|φ2〉, a2 = 〈φ2|H|φ2〉. Importantly, note that

〈φ0|H|φ2〉 =
(
〈φ′1| − a0〈φ0|

)
φ2〉 = 0. (5)

For |φ′3〉,
|φ′3〉 = H|φ2〉 − |φ2〉〈φ2|H|φ2〉 − |φ1〉〈φ1|H|φ2〉 = H|φ2〉 − a2|φ2〉 − b2|φ1〉. (6)

Due to Eq. (5), 〈φ0|φ′3〉 = 0. Accordingly, one can be easily convinced that the Hamiltonian

matrix in the Krylov space generated by the above procedure is indeed a tridiagonal matrix.
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Lanczos Algorithm Basis of Lanczos

The Convergence of Lanczos
Eigenvalues of HN converge rapidly towards eigenvalues of H.

Once desired eigenvalue is converged, restart recursion and assemble the
eigenvector.

Lanczos algorithm

General facts

! Developed by Cornelius Lanczos in the 1950s

! Fast convergence of extremal (smallest or largest) eigenstates

! Simple iterative algorithm (only sparse MVM), low memory requirements

! Belongs to the class of Krylov space methods

Algorithm

! Starting from random |φ0⟩ build a tridiagonal matrix with:

|φ′⟩ = H|φn⟩ − βn|φn−1⟩ ,

αn = ⟨φn|φ′⟩ ,

|φ′′⟩ = |φ′⟩ − αn|φn⟩ ,

βn+1 = ||φ′′|| =
√

⟨φ′′|φ′′⟩ ,

|φn+1⟩ = |φ′′⟩/βn+1 ,

H̃N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α0 β1 0 . . . . . . . . . . . . 0
β1 α1 β2 0 . . . . . 0
0 β2 α2 β3 0 0

. . .
. . .

. . .

0 . . 0 βN−2 αN−2 βN−1

0 . . . . . . . 0 βN−1 αN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

 Lanczos Algorithm (C. Lanczos, 1950)

 Eigenvalues of HN converge rapidly
 towards eigenvalues of H.

 Once desired eigenvalue is converged,
 restart recursion and assemble the 
 eigenvector.

Three vector recursion

very quick convergence for extremal eigenvalues !

Linear Algebra:
The most popular: Lanczos Algorithm

Ground state converges first, then successively excited states.
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Lanczos Algorithm Basis of Lanczos

Some Words

Degeneracies of eigenvalues can not be resolved by construction.

The Lanczos method can only generate a single state of a multiplet.

some random linear combination of degenerate states

To resolve the degeneracies a band Lanczos or the (Jacobi-)Davidson
technique is needed.

The orthogonality will be eventually lost with the increase of iteration ...
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Lanczos Algorithm Loss of Orthogonality and Ghosts
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Lanczos Algorithm Loss of Orthogonality and Ghosts

Round-Off Errors and Ghosts

In exact arithmetic, the basis set {φi} are orthogonal, and the Lanczos
scheme should never produce degenerate states.

The loss of orthogonality is caused by the accumulation of round-off errors in
the course of constructing the basis set.

Once the ground state has converged, the vectors in the recursion tend to
lose their orthogonality.

Then the resulting matrix contains extra spurious eigenvalues, called
“ghosts”, which are not real eigenvalues of H.

The ghosts converge towards real eigenvalues of H with the iteration process
continuing, and increase some states multiplicities.

Checkpointing is useful when performing large-scale simulations.
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Lanczos Algorithm Loss of Orthogonality and Ghosts

Degenracy

19
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Lanczos Algorithm Loss of Orthogonality and Ghosts

Remedies

Re-orthogonalization. But expensive in time and memory...

If we only want to distinguish ghosts from real eigenvalues, there is a simple
criterion by using the fact that the ghosts do not depend on the starting
vector (from Yi-Hong Chen):

Construct another matrix T ′ from T by deleting its first row and column:

Roundoff errors and ghosts
` A simple criterion distinguishes ghosts from real eigenvalues. 

Ghosts are caused by roundoff errors. Thus they do not 
depend on the starting vector Ii. As a consequence these 
ghosts are also eigenvalues of the matrix T’, which can be 
obtained from T’ by deleting the first row and column:

` Criterion to distinguish ghosts from real eigenvalues:
` All multiple eigenvalues are real, but their multiplicities might be 

too large.
` All single eigenvalues of T which are not eigenvalues of T’ are also 

real.
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Criterion:
I All multiple eigenvalues are real.
I All single eigenvalues of T which are not eigenvalues of T ′ are also real.
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Miscellaneous Applications

Besides using Lanczos to obtain the ground state of a Hamiltonian and some
low-lying spectrum, we can use the algorithm for various purposes.
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Miscellaneous Applications Green’s Function
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Miscellaneous Applications Green’s Function

Green’s Function - Continued Fraction
We want to calculate

G (ω) = 〈ψ0|O†
1

ω − H + E0
O|ψ0〉

Define the normalized initial state as

|φ0〉 :=
1√

〈ψ0|O†O|ψ0〉
O|ψ0〉

Then

G (ω) = 〈ψ0|O†O|ψ0〉〈φ0|
1

z − H
|φ0〉 = 〈ψ0|O†O|ψ0〉(z − H)−1

00

with z = ω + E0, and

z − H =




z − a0 −b1 0 . . .
−b1 z − a1 −b2 . . .

0 −b2 z − a2 . . .
...

...
...

. . .



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Miscellaneous Applications Green’s Function

z − H =




z − a0 −b1 0 . . .
−b1 z − a1 −b2 . . .

0 −b2 z − a2 . . .
...

...
...

. . .




(z − H)−1
00 =

det D1

det(z − H)
=

det D1

(z − a0) det D1 − b2
1 det D2

=
1

z − a0 − b2
1

det D2

det D1

=
1

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − . . .
More details, see Elbio Dagotto, RMP 66, 763 (1994)
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Miscellaneous Applications Finite Temperature Lanczos Methods

Finite Temperature Lanczos Methods

〈A〉 =
1

Z

N∑

n=1

〈n|Ae−βH |n〉, Z =
N∑

n=1

〈n|e−βH |n〉

Finite T (FTLM)

〈A〉 =
1

Z

R∑
r=1

M∑
j=0

e−βε
r
j 〈r |ψr

j 〉〈ψr
j |A|r〉,

Z =
R∑

r=1

M∑
j=0

e−βε
r
j

∣∣∣〈r |ψr
j 〉
∣∣∣2 ,

where
I

∑
r is a stochastic sampling over starting vectors |r〉.

I |ψr
j 〉 and εrj are obtained in Lanczos algorithm with the initial state |r〉.

I M is the Lanczos cutoff.

Low T (LTLM)

〈A〉 =
1

Z

R∑
r=1

M∑
i=0

M∑
j=0

e−βε
r
i /2e−βε

r
j /2〈r |ψr

j 〉〈ψr
j |A|ψr

i 〉〈ψr
i |r〉
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Miscellaneous Applications Time-Dependent Lanczos
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Miscellaneous Applications Time-Dependent Lanczos

Time-Dependent Lanczos

A time-dependent Schrödinger equation,

i
∂ψ(t)

∂t
= H(t)ψ(t), |ψ(t)〉 = T

[
e
−i
∫ t
t0
H(t′)dt′

]
|ψ (t = t0)〉

The time evolution of |ψ(t)〉 can be approached by step-vise change of time t in
small time increments δt.

|ψ(t + δt)〉 ' e−iH(t)δt |ψ(t)〉 '
M∑

l=1

|l〉〈l |e−iH(t)δt |ψ(t)〉 =
M∑

l=1

e−iεlδt |l〉〈l |ψ(t)〉,

where |l〉, εl ,M are Lanczos eigenvectors and eigenvalues of the tridiagonal matrix
with dimension M, obtained by Lanczos iterations. |ψ(t)〉 is served as the initial
state.

The unitarity of the time-evolution operator is preserved in this method.
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Miscellaneous Applications Time-Dependent Lanczos

For

|ψ(t + δt)〉 '
M∑

l=1

e−iεlδt |l〉〈l |ψ(t)〉,

suppose {|n〉} are the bases in Krylov space. The relations between the Krylov
basis and the original basis can be obtained in the Lanczos iteration successively:

|n〉 =
∑

i

a
(n)
i |i〉

|0〉 = |ψ(t)〉, |l〉 =
∑

n

Anl |n〉 (column style)

〈l |ψ(t)〉 = 〈l |0〉 = A∗0l = A0l (real vectors)

So

|ψ(t + δt)〉 '
∑

n

∑

i

M∑

l=1

e−iεlδtA0lAnla
(n)
i |i〉.
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Miscellaneous Applications Time-Dependent Lanczos

For more details, see

Peter Prelovšek and Janez Bonča, Ground State and Finite Temperature Lanczos
Methods, arXiv:1111.5931.
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Miscellaneous Applications Time-Dependent Lanczos
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Solving Out-Of-Equilibrium Quantum Problems via
Time-Dependent Lanczos Method: II

Hantao Lu

Lanzhou University

CSRC Workshop on Quantum Non-Equilibrium Phenomena:
Methods and Applications, 17-21 June 2019
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Introduction: Ultrafast Spectroscopy

Why are we interested in (or do we need) ultrafast
dynamics?
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Introduction: Ultrafast Spectroscopy

Complexity in Correlated Electronic Systems

a)

HTS CMR

T T
High Temperature
Superconductivity

RR B=0
B>0

Colossal
Magneto-Resistance

MIT

T
Metal-to-Insulator

Transition

R

b)

Chimera

Spin

Charge

Orbital

Lattice

Fig. V.1. a) Three macroscopic manifestations of correlated elec-
trons, with strong potential for important applications. b) The 
Charge-Spin-Orbital-Lattice “Chimera” of correlated electron sci-
ence [1], which emphasizers the interrelated degrees of freedom. 
The Chimera is a beast from Greek mythology.

V. Time-Resolved Spectroscopy of Correlated Electron Materials PSI – SwissFEL Science Case 77

Multiferroic materials

Fig. V.i1. The multiferroic material RbFe(MoO4)2.

Order parameters that can be switched between and 

“up” and “down” states are called ferroic. If a mate-

rial has simultaneously two ferroic order paramaters, 

then it is called multiferroic. This definition has been 

somewhat relaxed in the past few years, and it has 

now customary to call any material multiferroic that 

shows spontaneous magnetic order and ferroelectric-

ity [24]. An example is when a material has a spon-

taneous dipole moment and antiferromagnetic order. 

Because multiple order parameters are almost always 

coupled, multiferroic materials hold the promise that 

the electric dipole moment can be manipulated mag-

netically, or that ferromagnetic magnetization can be 

manipulated electrically, with exciting possibilities for 

novel device applications involving ultrafast switching. 

There are different mechanisms that can lead to 

the simultaneous presence of ferroelectricy and mag-

netic order. One of the simplest is when ferroelectric-

ity emerges directly from magnetic order. This can 

happen when magnetic order breaks the symmetry in 

such a way that a switchable electric polarization oc-

curs. There are other mechanisms, such as geomet-

ric ferroelectrics and lone-pair ferroelectrics, which 

are as yet not fully understood. The most interesting 

and promising cases are materials in which ferroelec-

tricity arises from charge frustration which is coupled 

with magnetism (see Fig. V.i1). This can lead to a 

large electric polarization and strong coupling effects 

at high temperature. There are only few such elec-

tronic ferroelectrics known to date, and their physics 

is presently under intense investigation. 

Interplay between various degrees of freedom

is Landau’s Fermi-liquid theory of the metals, which
posits that the fundamental properties of the metal-
lic state are the same as those of a system of non -
interacting electrons, despite the presence of
Coulomb forces between them. 

Landau’s theory is based on the notion that the
lowest-lying excitations above the metallic ground
state are quasiparticles—quantum mechanical reso-
nances that carry the same spin and charge as elec-
trons, but with finite lifetime and enhanced effective
mass. The ultimate message of Landau’s theory is
that the ground state of strongly interacting fermi-
ons is limited to either liquid-like states that behave
like noninteracting electrons or, if interactions are
sufficiently strong, a state with spontaneously bro-
ken symmetry—for example, superconductivity or
magnetism. 

The remarkable properties of heavy-fermion
materials1 epitomize Landau’s idea. In heavy-
fermion metals, the conducting electrons interact
strongly with a lattice of localized spins and would
appear to be destined for some exotic phase at low
temperature. However, it turns out that despite
strong interactions between local and itinerant
spins, the ground state is still a weakly interacting
Fermi liquid, albeit one with an unseemly large en-
hancement of the quasiparticles’ mass that exceeds
10 000 in some cases. 

The discovery of heavy-fermion systems in the
late 1970s and early 1980s led to a pervasive notion
that the Fermi-liquid ground state must be in-
evitable in metals that did not order—for example,
in the configurations of their electrons’ charge or
spin degrees of freedom. Although a profound idea,
the message that materials with arbitrarily strong
interactions manifest the same ground state as non-
interacting electrons was not an especially inspiring
one. In a classic case of an exception that proves the
rule, the celebrated fractional quantum Hall effect
(FQHE) was discovered at about the same time. The
low-lying excitations of the FQHE state carry frac-
tional charge and statistics, proving that emergent
non-Fermi liquids could indeed exist. However,
early demonstrations of the FQHE carried the
 implication that such states were to be found only
under exotic conditions of ultrahigh mobility, re-
duced dimensionality, low temperature, and high
magnetic field. 

Thus the stage was set for the enormous psy-
chological impact of high-Tc superconductivity in
copper oxide materials. I recall sitting in a large au-
ditorium at Bell Labs in Murray Hill, New Jersey, in
1988 as onstage Robert Cava and Bertram Batlogg
connected a ceramic of yttrium barium copper oxide
(YBCO) to a pair of electrodes and dunked the small
puck-shaped object into liquid nitrogen. When the
digital voltmeter’s LED readout counted down to
0.00000, indicating zero resistance, the reaction of
the standing-room-only crowd was as if Elvis Pres-
ley had suddenly appeared from the wings. 

What the assembled scientists were responding
to was the sudden appearance of exotic quantum
physics in a real material under conditions that, if
not quite ambient, were not far from it. Within
months, Philip Anderson set the agenda for the next

quarter century of high-Tc research when he pro-
posed that what was really special about the new su-
perconductors was that their normal-state proper-
ties reflected a breakdown of the Landau paradigm.2

Materials mash-up
Some of the most interesting quantum materials
under investigation today were known 40 years ago.
Although the materials were intriguing, they were
also considered too messy to yield to fundamental
understanding, an idea that echoed Wolfgang
Pauli’s notorious warning not to work on dirty
semiconductors. However, mess is in the eye of the
beholder, and the urgency created by the discovery
of high-Tc superconductivity in a complicated 
transition-metal oxide propelled many of us past
our reluctance.

The ensuing years of research have shown that
the apparent mess arises because competing spin, or-
bital, and lattice interactions yield a multiplicity of
nearly degenerate ground states and complex phase
diagrams. It has become increasingly clear that it is
precisely in such systems—where complexity rules—
that the most interesting and technologically impor-
tant properties emerge. Competing interactions can
enable a rapid transformation of a material from insu-
lator to superconductor, or from magnet to paramag-
net, in response to relatively weak external stimuli.
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Figure 1. A phase diagram for a hypothetical 
quantum material illustrates some key characteristics.
One often encounters a broad region of phase
space that lacks a clearly identified order parameter.
Such an unknown phase X is exemplified by the
pseudogap regime of the cuprate superconductors,
in which the superconductivity (SC) phase and X
may somehow blend together. There may also exist
one or more quantum critical points (QCPs) where
the material undergoes a continuous transition
from one phase to another at zero temperature. 
At finite temperature but near the quantum critical
value of x, thermal fluctuations between phases
may undermine Lev Landau’s Fermi-liquid picture 
of the metallic state—a picture in which electrons
behave as if they don’t  interact with each other. At
still higher x, Landau’s Fermi  liquid theory probably
holds sway.

Downloaded 09 Jan 2013 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://www.physicstoday.org/about_us/terms

A generic phase diagram
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Introduction: Ultrafast Spectroscopy

Using ultrafast spectroscopy, in principle, we can

Decouple various degrees of freedom

Selective examinations

Study their cooperative or competitive interplays

Nonequilibrium dynamics

Next, we will give some examples...
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Introduction: Ultrafast Spectroscopy

Transient Insulator-to-Metal transition I

Ultrafast Optical Switching to a Metallic State by Photoinduced Mott Transition
in a Halogen-Bridged Nickel-Chain Compound
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We demonstrate the ultrafast photoinduced Mott transition from a charge transfer insulator to a
metal in a halogen-bridged Ni-chain compound by pump-probe reflection spectroscopy. Upon the
irradiation of a 130-femtosecond laser pulse, the spectral weight of the gap transition is transferred to
the inner-gap region. When the photoexcitation density exceeds 0:1=Ni site, the Drude-like high-
reflection band appears in the infrared region, signaling the formation of a metallic state. The
photogeneration of the metallic state and the subsequent recovery to the original gapped state occur
within a few picoseconds.

DOI: 10.1103/PhysRevLett.91.057401 PACS numbers: 78.47.+p, 73.20.Mf, 78.55.Kz

Since the discovery of high-Tc superconductivity, dop-
ing-induced insulator (I)–metal (M) transitions or fill-
ing-control Mott transitions in 3d transition-metal
compounds have been attracting much attention. In most
undoped 3d transition-metal oxides, electrons are local-
ized on atomic sites due to the strong Coulomb repulsion
energy U, forming antiferromagnetic insulators [Mott
insulators or charge transfer (CT) insulators]. Their elec-
tronic and magnetic properties can, however, be modified
to a large extent by chemical doping [1–3]. The transi-
tion from an antiferromagnetic insulator to a ferromag-
netic metal [1] induced by doping and the related
colossal magnetoresistance phenomena in the perovskite
manganites [2,3] are a very dramatic example as well
as the high-Tc superconductivity that emerges in the
hole- or electron-doped layer-structured cuprates [1].
Photoirradiation is another effective method of producing
carriers in materials [4]. In this context, the photocarrier
doping will also give rise to a large response in the Mott
insulators and CT insulators. By using a femtosecond-
pulse laser as a light source for the photocarrier doping,
control of the conducting properties may be achieved in
an ultrafast time domain. This is an important strategy
for the realization of the ultrafast devices with Tb=s class
operation [5–8].

Here, we report the photoinduced I-M switching of the
halogen-bridged Ni-chain compound, which is a proto-
typical 1D CT insulator. Photocarrier doping by using a
130-femtosecond laser pulse on the Ni-chain compound
induces a marked change of the electronic structure.
When the photoexcitation density exceeds 0.1 per Ni
site, a Drude-like high-reflection band appears in the
infrared (IR) region, signaling the formation of a metal-
lic state. Ultrafast dynamics of the photoinduced metallic

state will be discussed on the basis of the results of
temporal and doping-density dependence of the reflectiv-
ity spectra.

Figure 1(a) shows the crystal structure of
!Ni"chxn#2Br$Br2 [9]. The Ni3% and Br& ions line up
alternately along the b axis. Four N atoms of the two
ligand units (chxn:cyclohexanediamine) coordinating a
Ni ion produce such a strong ligand field that the Ni3% ion
is in a low spin state (d7:S ' 1=2) with an unpaired
electron in the d2z orbital. The 1D electronic state is
formed via the hybridization between Ni d2z and Br pz
orbitals. The large U of Ni 3d electrons opens a gap
between the Ni 3d upper Hubbard (UH) band and the
lower Hubbard (LH) one [Fig. 1(b)]. The occupied Br 4p
band positions itself within the Mott-Hubbard gap, and
hence the lowest-energy electronic excitation is a CT
transition from the Br 4p valence band to the Ni 3d UH

FIG. 1. (a) Crystal structure and (b) electronic structure of
!Ni"chxn#2Br$Br2.
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band [10]. Thus, the electronic structure of this system is
similar to that of the 1D cuprates such as M2CuO3 (M !
Sr or Ca) [1]. Strong one-dimensional antiferromagnetic
interaction J" 3000 K [11] works between the spins on
the neighboring Ni site, similarly to the case of Sr2CuO3
(J" 2200 K) [12].

It has recently been reported [13] that this Ni com-
pound has a gigantic third-order nonlinear susceptibility
!#3$. The enhancement of !#3$ is due to the large dipole
moment ( % 20 !A) between the odd- and even-parity CT
excited states, which are nearly degenerate with each
other. Such a large dipole moment and large J are con-
sequences of strong p-d hybridization. In addition, the
ultrafast decay of the photoexcited states within a few ps
has been reported in another 1D CT insulator, Sr2CuO3
[14]. The strong p-d hybridization and the ultrafast re-
laxation of the photoexcited states expected for the Ni-
chain compound will provide a good arena for testing an
ultrafast optical switching from I to M.

To probe the photodoping-induced change of the elec-
tronic structure, we adopted pump-probe reflection spec-
troscopy. In the measurement, a Ti:Al2O3 regenerative
amplifier system (Spectra Physics Hurricane) operating
at 1 kHz was employed as a light source. Output from the
laser (800 nm:1.55 eV) with the pulse width of 130 fs was

divided into two beams. One beam was used for a pump
light, and the other for the excitation of an optical para-
metric amplifier system (Spectra Physics OPA-800), from
which the probe light pulses ranging from 0.1 to 2.5 eV
were obtained. The time resolution of the apparatus is
200 fs. Single crystals of &Ni#chxn$2Br'Br2 were synthe-
sized electrochemically according to the procedure de-
scribed in the literature [15].

In Fig. 2(a), the polarized reflectivity spectrum is
presented by a broken line. A sharp peak at 1.3 eV is
due to the CT gap transition. The transient reflectivity
(TR) spectra observed at the delay time td after the
photoirradiation are shown by colored dots and lines in
the same figure. The intensity of the irradiated light was
3:6 mJ=cm2. Under this condition, the average excitation
density xph of the absorbed photon is 0.5 per Ni site
within the absorption depth (460 !A), as evaluated by
taking account of the reflection loss (30%) and the unit
cell volume (8:68( 10)21 cm3). Immediately after the
photoirradiation (td ! 0:1 ps), the reflectivity in the mid-
IR region remarkably increases, being reminiscent of
the Drude-like response, while the reflectivity around
the CT band decreases due to photoinduced bleaching.
The magnitude of the reflectivity R0 at td ! 0:1 ps reaches
about 70% at the lowest photon energy of the probe light
(0.12 eV), where the change of reflectivity ["R=R !
#R0 ) R$=R] is as large as 260% of the original reflectiv-
ity R. The imaginary part of the dielectric constant "2
was obtained by performing the Kramers-Kronig trans-
formation (KKT) of the reflectivity spectrum. (The va-
lidity of the KKT procedure is discussed later with
respect to Fig. 3. See also the note described in
Ref. [16]). The "2 at td ! 0:1 ps monotonically increases
with lowering the probe photon energy to 0.12 eV, sug-
gesting the closing of the optical gap. Such a remarkable
photoinduced feature is observed only for the probe light
polarization parallel along the Ni-Br chain (E k b) and
not for E ? b at all, suggesting the photogeneration of a
quasi-one-dimensional metallic state.

To clarify the photoinduced change of the electronic
state in greater detail, we have investigated the excitation
density xph dependence. Spectra of the TR and "2 at td !
0:1 ps for various xph are presented in Figs. 3(a) and 3(b).
For the weak excitation of xph ! 6:2( 10)4, a midgap
absorption with a peak around 0.4 eV is observed in the "2
spectrum as shown in Fig. 3(b). A similar photoinduced
midgap absorption has also been reported in 2D cuprates
such as Nd2CuO4 and La2CuO4 [17]. As xph increases, the
low-energy part of "2 below 0.2 eV significantly grows,
and for xph > 0:1, the optical gap seems to disappear.

To investigate the evolution of the photoinduced Mott
transition as well as to ascertain the validity of the overall
analysis of the TR spectra using KKT, it is useful to
examine the transfer of the spectral weight from the CT
gap region to the innergap one. The spectral weight can be
quantitatively analyzed in terms of the effective number
of electrons Neff#!$ defined as

FIG. 2 (color). (a) Reflectivity spectra observed prior to the
photoexcitation (a broken line) and at delay time td after
the photoexcitation (colored dots and solid lines) at room
temperature. The excitation density xph is 0:5 photon=Ni site.
Polarizations of the pump and probe lights are both parallel to
the chain axis b. (b) Spectra of the imaginary part of the
dielectric constant "2 before (a broken line) and after (colored
solid lines) photoexcitation, obtained by Kramers-Kronig
analysis of the reflectivity data shown in (a).
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We demonstrate the ultrafast photoinduced Mott transition from a charge transfer insulator to a
metal in a halogen-bridged Ni-chain compound by pump-probe reflection spectroscopy. Upon the
irradiation of a 130-femtosecond laser pulse, the spectral weight of the gap transition is transferred to
the inner-gap region. When the photoexcitation density exceeds 0:1=Ni site, the Drude-like high-
reflection band appears in the infrared region, signaling the formation of a metallic state. The
photogeneration of the metallic state and the subsequent recovery to the original gapped state occur
within a few picoseconds.
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Since the discovery of high-Tc superconductivity, dop-
ing-induced insulator (I)–metal (M) transitions or fill-
ing-control Mott transitions in 3d transition-metal
compounds have been attracting much attention. In most
undoped 3d transition-metal oxides, electrons are local-
ized on atomic sites due to the strong Coulomb repulsion
energy U, forming antiferromagnetic insulators [Mott
insulators or charge transfer (CT) insulators]. Their elec-
tronic and magnetic properties can, however, be modified
to a large extent by chemical doping [1–3]. The transi-
tion from an antiferromagnetic insulator to a ferromag-
netic metal [1] induced by doping and the related
colossal magnetoresistance phenomena in the perovskite
manganites [2,3] are a very dramatic example as well
as the high-Tc superconductivity that emerges in the
hole- or electron-doped layer-structured cuprates [1].
Photoirradiation is another effective method of producing
carriers in materials [4]. In this context, the photocarrier
doping will also give rise to a large response in the Mott
insulators and CT insulators. By using a femtosecond-
pulse laser as a light source for the photocarrier doping,
control of the conducting properties may be achieved in
an ultrafast time domain. This is an important strategy
for the realization of the ultrafast devices with Tb=s class
operation [5–8].

Here, we report the photoinduced I-M switching of the
halogen-bridged Ni-chain compound, which is a proto-
typical 1D CT insulator. Photocarrier doping by using a
130-femtosecond laser pulse on the Ni-chain compound
induces a marked change of the electronic structure.
When the photoexcitation density exceeds 0.1 per Ni
site, a Drude-like high-reflection band appears in the
infrared (IR) region, signaling the formation of a metal-
lic state. Ultrafast dynamics of the photoinduced metallic

state will be discussed on the basis of the results of
temporal and doping-density dependence of the reflectiv-
ity spectra.

Figure 1(a) shows the crystal structure of
!Ni"chxn#2Br$Br2 [9]. The Ni3% and Br& ions line up
alternately along the b axis. Four N atoms of the two
ligand units (chxn:cyclohexanediamine) coordinating a
Ni ion produce such a strong ligand field that the Ni3% ion
is in a low spin state (d7:S ' 1=2) with an unpaired
electron in the d2z orbital. The 1D electronic state is
formed via the hybridization between Ni d2z and Br pz
orbitals. The large U of Ni 3d electrons opens a gap
between the Ni 3d upper Hubbard (UH) band and the
lower Hubbard (LH) one [Fig. 1(b)]. The occupied Br 4p
band positions itself within the Mott-Hubbard gap, and
hence the lowest-energy electronic excitation is a CT
transition from the Br 4p valence band to the Ni 3d UH

FIG. 1. (a) Crystal structure and (b) electronic structure of
!Ni"chxn#2Br$Br2.

P H Y S I C A L R E V I E W L E T T E R S week ending
1 AUGUST 2003VOLUME 91, NUMBER 5

057401-1 0031-9007=03=91(5)=057401(4)$20.00 © 2003 The American Physical Society 057401-1
Hantao Lu (LZU) Time-Dependent Lanczos CSRC Workshop 17-21/06/2019 6 / 40



Introduction: Ultrafast Spectroscopy

Transient Insulator-to-Metal transition II

LETTERS

Control of the electronic phase of a manganite by
mode-selective vibrational excitation
Matteo Rini1, Ra’anan Tobey2, Nicky Dean2, Jiro Itatani1,3, Yasuhide Tomioka4, Yoshinori Tokura4,5,
Robert W. Schoenlein1 & Andrea Cavalleri2,6

Controlling a phase of matter by coherently manipulating specific
vibrational modes has long been an attractive (yet elusive) goal for
ultrafast science. Solids with strongly correlated electrons, in which
even subtle crystallographic distortions can result in colossal changes
of the electronic and magnetic properties, could be directed between
competing phases by such selective vibrational excitation. In this
way, the dynamics of the electronic ground state of the system
become accessible, and new insight into the underlying physics might
be gained. Here we report the ultrafast switching of the electronic
phase of a magnetoresistive manganite via direct excitation of a pho-
non mode at 71 meV (17 THz). A prompt, five-order-of-magnitude
drop in resistivity is observed, associated with a non-equilibrium
transition from the stable insulating phase to a metastable metallic
phase. In contrast with light-induced1–3 and current-driven4 phase
transitions, the vibrationally driven bandgap collapse observed here
is not related to hot-carrier injection and is uniquely attributed to a
large-amplitude Mn–O distortion. This corresponds to a perturba-
tion of the perovskite-structure tolerance factor, which in turn con-
trols the electronic bandwidth via inter-site orbital overlap5,6. Phase
control by coherent manipulation of selected metal–oxygen phonons
should find extensive application in other complex solids—notably
in copper oxide superconductors, in which the role of Cu–O vibra-
tions on the electronic properties is currently controversial.

Manganites exhibit a number of exotic phenomena, including
charge-ordered and striped phases, orbital and magnetic ordering,
half-metallicity, phase separation and colossal magnetoresistance5,6.
Most of these phenomena stem from the strong interaction between
lattice, charge, orbital and spin degrees of freedom, which compete
on similar energy scales to determine the ground state of the system7.
Arguably, the most striking aspect of the physics of manganites is the
occurrence of a number of metal–insulator transitions, initiated for
instance via perturbations of temperature, magnetic field, pressure
and irradiation with light5.

Pr1 2 xCaxMnO3 is a unique example among manganites, exhib-
iting insulating behaviour over the entire chemical composition x
and over the entire temperature range8. This is a consequence of
the small ionic radius of Ca, which results in a pronounced ortho-
rhombic distortion (Fig. 1a) that favours charge localization6.
Notably, the insulating phase at x 5 0.3 adjoins a ‘hidden’ metallic
state of the system, characterized by enormous changes in resistivity.

In ABO3 perovskites, the orthorhombic distortion is quantified by
the geometric ‘tolerance factor’ that depends on the average A–O
(A 5 Pr, Ca) and B–O (B 5 Mn) distances:

C~
(A! O)ffiffiffi
2
p

(B!O)

where C 5 1 corresponds to an ideal cube, while C , 1 reflects a com-
pression of the Mn–O bond and an elongation of the A–O bond.
Moreover, C , 1 indicates a Mn–O–Mn angle h that is smaller than
180u, consistent with a symmetry-lowering rotation leading to ortho-
rhombic or rhombohedral structures. The tolerance factor is related to
the electronic properties of the solid via the one electron bandwidth W,
because the capacity for 3d electrons to hop between neighbouring
Mn-atoms depends on a super-transfer process via O(2p) states and on
the degree of overlap between orbitals in neighbouring sites6,9,10. The
hopping matrix element reaches its maximum at h 5 180u (cubic), and
decreases with h, vanishing at h 5 90u. Systematic studies of several
A0.7A90.3MnO3 compounds show that the tolerance factor controls the
competition between ferromagnetic metallic, paramagnetic insulat-
ing, and ferromagnetic insulating phases11.

Here we show that coherent excitation of specific infrared-active
modes can control the electronic phase of a manganite via direct modu-
lation of the tolerance factor. Figure 1b shows the low-temperature
optical conductivity spectrum of Pr0.7Ca0.3MnO3 with three dominant

1Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. 2Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU,
UK. 3ERATO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan. 4Correlated Electron Research Center, AIST, Tsukuba, Ibaraki, 305-8562 Japan. 5Department of
Applied Physics, University of Tokyo, Tokyo 113-8656, Japan. 6Central Laser Facility, Rutherford Appleton Laboratory and Diamond Light Source, Chilton, Didcot, OX11 0QX, UK.
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Figure 1 | Pr0.7Ca0.3MnO3 crystal structure and vibrational spectrum.
a, Unit cell of Pr0.7Ca0.3MnO3 with pronounced orthorhombic distortion
resulting from the small ionic radius of the Ca atoms. The Mn–O–Mn bond
is bent at an angle h , 180u, which varies linearly with the tolerance factor C
(ref. 10). The Pr/Ca doping results in an alternating network of Mn31 and
Mn41 ions. The crystal field splits the fivefold Mn 3d levels into t2g and eg

subsets. The electron hopping occurs between 3d eg levels of neighbouring
Mn31 and Mn41 species. The lattice distortion is related monotonically to
the one electron bandwidth W, because the effective hopping interaction of
3d electrons between neighbouring Mn sites depends on super-transfer
process via O(2p) states, and the p-orbital of oxygen cannot point towards
two manganese atoms simultaneously if h ? 180u (ref. 6). b, Low-
temperature (10 K) optical conductivity spectrum of Pr0.7Ca0.3MnO3. The
inset shows the atomic displacements within the MnO6 octahedra associated
with the 71 meV phonon mode that modulates the Mn–O distance, and
hence the tolerance factor.
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phonon modes (23, 42 and 71 meV)12 corresponding to the three (F2u)
infrared active vibrational modes of a cubic perovskite. The ortho-
rhombic distortion is responsible for the appearance of a number of
weaker resonances, although only a subset of the active 25 (7B1u 1
9B2u 1 9B3u) infrared phonon modes of a Pbnm orthorhombic struc-
ture is clearly visible. The two highest-frequency vibrations are
assigned to the Mn–O–Mn bending mode and the Mn–O stretching
mode respectively13. Both vibrational modes affect the geometrical
parameters determining the tolerance factor and are thus expected
to have a strong coupling to the electronic properties of the system.
Here we focus on the highest-frequency Mn–O stretching vibration at
71 meV and study the effect of coherent large-amplitude excitation of
this mode with intense femtosecond mid-infrared pulses. The material
response is investigated using both ultrafast pump–probe spectro-
scopy and transient conductivity measurements to characterize the
insulator–metal transition2,3,14–17.

Pr1 2 xCaxMnO3 single crystals with x 5 0.3 are synthesized by a
floating zone techinque18 and characterized by X-ray Laue as well as
neutron diffraction experiments18. The crystals are subsequently cut,
polished and annealed in an oxygen environment in preparation for
pump–probe studies. In the pump–probe spectroscopy studies,
Pr0.7Ca0.3MnO3 samples at 30 K are excited by 200–300 fs, ,1mJ
pulses tuned in the mid-infrared spectral region around 17.5mm
(corresponding to a photon energy hn 5 71 meV). The pump pulses
are focused to a fluence of about 1 mJ cm22 and the transient changes
in reflectivity are probed by delayed femtosecond pulses at visible to
near-infrared frequencies to identify the characteristic spectral sig-
natures and formation time of the metallic phase. Figure 2a shows
the transient reflectivity DR/R at 800 nm after impulsive vibrational
excitation at 17.5 mm and compared with above-bandgap pulsed
excitation. The reflectivity responses are identical, with large long-
lived changes in reflectivity developing within 1 ps of excitation.
Moreover, these changes exhibit threshold and saturation depend-
ence on the pump fluence, characteristic of a phase transformation
to the metallic state, as previously established for above-bandgap
excitation15.

Figure 2b shows the spectral dependence of theDR/R signal (at 1 ps
delay) for the case of the 17.5mm pump wavelength. The spectrum of
the reflectivity changes exhibits identical features, as in previous
optical studies in Pr0.7Ca0.3MnO3 (ref. 17), which showed that the
transition to the conducting phase (induced either by applied
magnetic field, or by above-bandgap transient optical excitation) is
characterized by decreased reflectivity at photon energies in the 0.5–
1.9 eV range and increased reflectivity at higher photon energies.
Such reflectivity changes have been interpreted as a consequence of
melting of the charge order and of the collapse of the 0.3 eV insulating
gap, leading to the formation of a pseudo plasma edge in the metallic
state12. Our observation of the ultrafast formation of a metallic-like
reflectivity spectrum after 17.5 mm pump excitation provides

evidence that the metallic state is formed promptly (within the
300 fs experimental resolution) via direct vibrational excitation,
and that this state persists for hundreds of picoseconds. Although
the spectral reflectivity signature is associated with the conducting
phase of Pr0.7Ca0.3MnO3, our recent measurements show that this is
not uniquely indicative of the melting of charge order, because a
similar spectral signature is observed when the metallic phase is
induced by photoexcitation from the room-temperature paramag-
netic insulating phase.

Figure 2c shows the dependence of the reflectivity change (mea-
sured at 1 ps delay, 800 nm probe wavelength) on the pump wave-
length, in the vicinity of the phonon resonance. The observed
reflectivity change clearly vanishes when the pump wavelength is
tuned outside the 17.5 mm phonon absorption band. The magnitude
of DR/R is maximum when the excitation wavelength is resonant
with the Mn–O stretching mode, providing further evidence of an
ultrafast vibrationally induced phase transition. The linear absorp-
tion spectrum around the 17.5 mm phonon resonance is not polar-
ization-dependent12 and no significant dependence on the pump
polarization was observed either in the pump–probe experiments
or in the conductivity measurements.

In addition to the optical measurements, changes in the sample
conductivity are directly monitored by measuring the transient sam-
ple resistance after mid-infrared excitation. Gold electrodes with a
200-mm-wide gap are vacuum-evaporated onto the sample surface2,
and are d.c.-biased at 30 V. Measurements are performed at 30 K,
where the charge-ordered, anti-ferromagnetic phase exhibits strong
insulating character8. Laser pulses at 17.5 mm are used to excite the
sample (under conditions identical to those described above), with
the laser spot fully covering the space between the electrodes. The
current flowing through the sample was monitored by measuring the
voltage drop across a 50V resistor. Mid-infrared excitation results in
a dramatic 1,000-fold increase in current (Fig. 3, upper panel), cor-
responding to a resistance drop from 2 GV to 1.25 MV. The high
conductivity state develops within the 4-ns resolution of the elec-
tronics and exhibits a resonance behaviour similar to that observed in
the optical measurements (Fig. 2c). Figure 3 (lower panel) shows the
increase in the sample conductivity derived from the measured tran-
sient resistance by assuming that the transition to the conductive
state is uniform throughout the excited sample volume. Given the
laser spot size at the electrodes (200 3 300 mm2) and the penetration
depth of the mid-infrared light (,0.5 mm)12, the sample conductivity
increase is estimated to exceed 105, from ,3 3 1028V21 cm21 to
,5 3 1023V21 cm21. The metastable metallic phase is formed and
relaxes within the experimental time resolution of 4 ns. The precise
assessment of the lifetime of the metallic phase by means of transport
measurements is hindered by oscillations due to ringing in the fast
current detection electronics with a time-dependent sample resist-
ance (see Fig. 3). However, the sample recovers its original resistance
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Figure 2 | Femtosecond pump–probe reflectivity studies. a, Relative
change of reflectivity at 800 nm (DR/R) as a function of pulse delay after
vibrational excitation at 17.5 mm (solid line) and 800 nm photo-excitation
(dotted line). b, Spectral dependence ofDR/R measured 1 ps after vibrational
excitation. The solid line is a spline fit to the data points (squares). The shift
of spectral weight towards longer wavelengths, shown by the shaded area

under the curve, is a signature of the formation of the metallic phase12,15.
c, DR/R at 800 nm measured 1 ps after excitation (squares) and absorption
spectrum around the 17.5mm phonon resonance (solid line). For
comparison, the phonon spectrum is convolved with the spectrum of the
broad-bandwidth pump pulses. Error bars are s.d.
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“Phonon-driven”
insulator-to-metal transition:
Pr0.7Ca0.3MnO3.

Solid line: 17.5 µm (pumping
wavelength); dotted line: 800
nm.
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On BaFeO3 thin films. Source: T. Tsuyama

et al., Phys. Rev. Lett. 116, 256402 (2016)

On VO2(B). Source: J. Lourembam et al.,
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What does it Look like?

1D Extended Hubbard model.

U = 10, L = 14; periodic BC.

Source: LHT et al, Phys. Rev. B

91, 245117 (2015)

Single-particle spectrum. L = 10,

twisted BC. (b) Ground state;

I+(k, ω) + I−(k, ω); (a) Pump

applied, I− only. Can Shao etc.,

in preparation.
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“Light-Induced Superconductivity” in LESCE1/8

Light-Induced Superconductivity in a
Stripe-Ordered Cuprate
D. Fausti,1,2*†‡ R. I. Tobey,2†§ N. Dean,1,2 S. Kaiser,1 A. Dienst,2 M. C. Hoffmann,1 S. Pyon,3

T. Takayama,3 H. Takagi,3,4 A. Cavalleri1,2*

One of the most intriguing features of some high-temperature cuprate superconductors is the
interplay between one-dimensional “striped” spin order and charge order, and superconductivity.
We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound,
nonsuperconducting La1.675Eu0.2Sr0.125CuO4, into a transient three-dimensional superconductor.
The emergence of coherent interlayer transport was evidenced by the prompt appearance of a
Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale
needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is
significantly faster than expected. This places stringent new constraints on our understanding of
stripe order and its relation to superconductivity.

High-temperature cuprate superconductors
are synthesized by chemically doping
the parent compound, an antiferromag-

netic Mott insulator. An example of a parent
compound is La2CuO4, which turns into an un-
conventional metal as holes are doped into its
CuO2 planes by substitution of La by Ba or Sr.
La2-x(Ba/Sr)xCuO4 becomes superconducting
for x > 0.05, reaching the highest critical tem-
peratures near x = 0.16. The x = 1/8 compound
deserves special attention, because it hosts one-
dimensional (1D) modulations of charge and
spin (1) and exhibits sharp reduction in critical
temperature Tc (superconducting transition tem-
perature). In the Ba-doped system, these “stripes”
become static, enhanced by the buckled Cu-O
planes in the so-called low-temperature tetrag-
onal (LTT) phase (2, 3). Static stripes, LTT
phases (4), and suppressed superconductivity
are also detected in La1.48Nd0.4Sr0.12CuO4 (5, 6)
and La1.675Eu0.2Sr0.125CuO4 (LESCO1/8) (7).
Figure 1 shows a schematic phase diagram of
La1.8-xEu0.2SrxCuO4, in which Tc is strongly
reduced in the stripe region, for all doping val-
ues below x = 0.2 (8, 9).

The transition between a doped Mott insula-
tor and a superconductor has long been at the
heart of research into cuprate superconductivity.
Virtually all studies have explored this transition
by changing static doping or by adiabatically
tuning an external parameter, such as pressure, to

demonstrate that superconductivity can be re-
stored if the equilibrium crystallographic struc-
ture is perturbed (10).

We dynamically perturbed the nonsuper-
conducting LESCO1/8 with mid-infrared (mid-IR)
radiation (11, 12), inducing superconductivity on
the ultrafast time scale. Optical excitation in the
visible or near-IR has been used in the past to
study (13–18), and sometimes even enhance
(19), superconductivity. However, in all these
cases, superconductivity could be achieved only
after the relaxation of hot incoherent carriers back
to the ground state and was not triggered directly
by the light field.

Nonsuperconducting LESCO1/8, held at a base
temperature of 10 K, was excited with 15-mm–
wavelength pulses (80 meV of photon energy),
made resonant with an in-plane, near–600 cm−1,
Cu-O stretch. The time-dependent intensity re-
flectivity,R = Irefl/Iinc (refl, reflected; inc, incident),
was measured in the near-IR (1.5 eV), a photon
energy at which the optical properties are indi-
rectly related to the appearance of superconductivi-
ty (20–22).Aprompt reflectivity change, remaining
constant up to the longest time delays probed
(100 ps), was observed (Fig. 2). Photoexcitation
with the electric field polarized orthogonal to the
planes resulted in only a small reflectivity change
during the pump pulse and no long-lived response.

The long-lived photoinduced state of LESCO1/8,
can be shown to be superconducting by time-
resolved terahertz spectroscopy. At equilibrium,
superconductivity in cuprates is reflected in the
appearance of a Josephson plasma resonance
(JPR) in the c-axis terahertz optical properties.
This is a general feature of cuprate supercon-
ductors (23–25), well understood by noting that
3D superconductivity in these compounds can be
explained by Josephson coupling between capac-
itively coupled stacks of quasi-2D superconducting
layers (26). This effect is shown in Fig. 3A for
optimally doped La1.84Sr0.16CuO4. A plasma edge
in the reflectance appears near 60 cm−1 when the
temperature is reduced below Tc = 38 K.

Figure 3C reports mid-IR pump, terahertz
reflectance-probe measurements in nonsuper-
conducting LESCO1/8. The equilibrium electric
field reflectance, as in other striped cuprates (27),
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Hamburg, Germany. 2Department of Physics, Clarendon Lab-
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Fig. 1. Schematic phase diagram for La1.8-xEu0.2SrxCuO4. Superconductivity (yellow area) is quenched at
all doping levels (gray area) below 0.2, emerging only at very low temperatures. At 0.125 doping, a static
1Dmodulation of charges and spins, the stripe state, emerges in the planes. This stripe phase (left inset) is
associated with a LTT distortion, in which the oxygen octahedrals in the crystal are tilted (right inset). The
red dashed curve marks the boundary for superconductivity in compounds of the type La2-xSrxCuO4, in
which the LTT structural modulation is less pronounced.
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La1.8−xEu0.2SrxCuO4 (LESCOx) phase dia-

gram and low-temperature tetragonal (LTT)

distortion

superconductor following the mid-IR excitation pulse
was not probed in this experiment and remains unknown.
Knowledge of their dynamics would provide new insight
into the microscopic physics of this light-induced super-
conducting state, and perhaps even into the origin of
superconductivity itself. In particular, by understanding
which order needs to be destabilized for superconduc-
tivity to appear, one would be able to assess “cause and
effect” relationships in this complex system where several
types of order compete at equilibrium. Such assessment,
however, can only be made by examining the ultrafast
response following controlled excitation out of the
equilibrium state.
Here, we use femtosecond resonant soft x-ray diffraction

at a free electron laser (FEL) [12–15] to directly probe the
dynamics of both the stripe order and the LTT distortion in
the stripe-ordered cuprate LBCO1=8 following a mid-IR
pump. We find that excitation in resonance with the same
Cu-O stretch mode used to induce superconductivity in
LESCO1=8 causes a nonequilibrium melting of the charge
stripe order. Importantly, the stripe order suppression,
which is prompt and almost complete, is decoupled from
the LTT distortion. This latter is only reduced by 12% and
occurs over time scales that are significantly longer than
both the charge order melting, and the light-induced
superconducting transition in LESCO1=8. This measure-
ment unveils a direct correlation between charge stripe
order and the frustration of superconductivity in the 214
cuprates at 1=8 doping, and suggests that the lattice
distortion may simply be an epiphenomenon.
For LBCO1=8, in thermal equilibrium, one-dimensional

hole ordering within the CuO2 planes is observed below
TCO ¼ 55 K. As sketched in Fig. 1, the charges localize in
stripes that form π-phase shift domain walls for the
antiferromagnetism. These stripes are rotated by 90° in
neighboring planes along the crystal c axis [9]. In addition,
parallel stripes are shifted by half a period between every
second CuO2 plane, giving rise to charge order reflections
at a wave vector of (0.24 0 0.5). Here, we use the
conventional notation of the high temperature tetragonal
(I4=mmm) unit cell. At the same temperature TLTT ¼ TCO,
the LBCO1=8 crystal lattice transforms from the low-
temperature orthorhombic phase into the LTT phase, where
the CuO6 octahedra tilt around the [100] and [010] axes,
i.e., along the O-Cu-O bonds, in the ab plane. This
distortion buckles the CuO2 planes changing tilt direction
from layer to layer [4]. The critical temperature TC for bulk
superconductivity in LBCO1=8 is <3 K [1,2,7].
Both static stripe order and the LTT distortion can be

measured through resonant soft x-ray diffraction near the
oxygen K edge. Static charge stripes are observed at a wave
vector of Q ¼ ð 0.24 0 0.5 Þ with a large resonant
enhancement at the mobile carrier peak [16–18]. This is
a preedge feature in the x-ray absorption spectrum at
528 eV, associated with the doped holes [19]. The LTT

distortion can be directly measured through the (001)
diffraction peak which is structurally forbidden in the
high-temperature phases. In the low-temperature phase,
it becomes allowed, on resonance, because of the rotation
of the sense of tilt in adjacent CuO2 planes [20]. This peak
can be observed by tuning the photon energy to 532 eV
[17,18], corresponding to the La-O hybridized states.
We note that we have chosen to study LBCO1=8 and not

LESCO1=8 in this work because the stripe order peak
intensity is approximately ten times larger than in
LESCO1=8 and the present experiments are extremely
challenging at current x-ray free electron lasers. They
would not be possible in LESCO1=8. Nevertheless, the
comparison between stripe order melting in LBCO1=8 and
light-induced superconductivity in LESCO1=8 is expected
to be a valid one. Both compounds exhibit the same low
temperature ground state, with both an LTT distortion and
charge and spin stripe order. Both compounds are non-
superconductors at 1=8 doping and both are equilibrium
superconductors with a maximum TC ∼ 20–30 K. Thus,
this work is expected to shed light on the microscopic
mechanisms for photoinduced superconductivity in stripe-
ordered cuprates and possibly on the respective roles of
electronic and lattice order in suppressing equilibrium
superconductivity at x ¼ 1=8 doping.

a

b

c

FIG. 1 (color online). Schematic drawing of the
La1.875Ba0.125CuO4 charge, spin, and lattice arrangement within
a CuO2 plane in the stripe-ordered, low-temperature tetragonal
phase (T < 55 K). Here, Cu atoms are shown as (big) blue,
oxygen atoms as (small) red spheres. Holes form stripes which
separate domains of oppositely phased antiferromagnetic do-
mains (spins indicated by arrows). The LTT distortion is visible
through the tilt of the octahedra central planes. The periodic
stacking of those CuO2 planes is sketched in the lower figure part.
The stripe orientation rotates by 90° between layers.

PRL 112, 157002 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

157002-2

schematic drawing of stripe phase

It was believed that stripes are pinned by LTT.
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Introduction: Ultrafast Spectroscopy

exhibits a featureless terahertz response reminis-
cent of that of LSCO0.16 above Tc (Fig. 3B). Five
picoseconds after excitation, a plasma edge at a
frequency comparable to that of the LSCO0.16

JPR is observed, indicating the emergence of co-
herent transport in the c axis. This is the most
important observation of our work, evidencing
ultrafast photoinduced superconductivity in
LESCO1/8.

The measured change in the absolute tera-
hertz field reflectance is less than 1%, which is
suggestive of an incomplete transformation of the
probed volume. This is well explained by noting
that the pump field penetration depth is about
200 nm, whereas the terehertz probe samples a
depth of nearly 10 mm. The raw data of Fig. 3C
was processed assuming a total terahertz re-
flectance resulting from a homogeneously trans-
formed surface layer and an unperturbed bulk
beneath. Relying on the knowledge of both am-
plitude and phase of the static and transient field
reflectance, we could isolate the real and imag-
inary part of the time- and frequency-dependent
optical conductivity s1(w,t) + is2(w,t) in the
surface layer. In Fig. 4, we plot the imaginary part
s2(w,t), after subtracting a component originat-
ing from higher-frequency oscillators, which are
also perturbed by photoexcitation and give a
negative contribution to the conductivity change
(28). The imaginary time-dependent conductivity
s2(w,t) acquires a 1/w frequency dependence
immediately after excitation. A divergent imag-
inary conductivity at low frequencies is a defin-
ing characteristic of a superconductor. The real
part s1ðwÞ ¼ p=2ðnse2=m*Þdð0Þ reflects van-
ishing DC resistivity, and s2ðwÞ ¼ nse2=m*w is
connected to the diamagnetic response, and to
the Meissner effect as w→ 0 (29) Here ns is the

superfluid density, e is the electron charge, and
m* is the electron effective mass (30). The
quantity ws2ðw → 0*,tÞ (31), defined as the
low-frequency limit of the measured terahertz
transient for various pump-probe time delays,
provides a measure of the formation time of the
superconducting state (Fig. 4B). The prompt ap-
pearance of finite superconducting density, over-
shooting before relaxing into a plateau at a 5-ps
time delay, reflects the transition dynamics be-
tween the striped state and the 3D superconductor.
The temperature dependence of s2(w,t), for time
delays t = 5 ps shows that the signatures of the
transient superconducting state are lost above a base
temperature of 20 K, at least for the 1 mJ/cm2

excitation fluence used here (Fig. 4C).
In Fig. 4D we plot the wavelength-dependent

susceptibility for photoinduced superconduc-
tivity, operationally defined as the inverse of the
fluence Fsat at which the photoinduced optical
properties start saturating (see supporting online
material). The key observation is that the photo-
susceptibility has a pronounced peak at the fre-
quency of the phonon. In comparison, at the
same frequency, the reflectivity and the extinction
coefficient change only marginally. As shown in
Fig. 4D, the photosusceptibility (red dots) fol-
lows the phonon-resonance line shape (dashed
curve), plotted as a “partial” extinction coeffi-
cient aphonon and associated with a single oscil-
lator extracted from a Drude-Lorentz fit of the

broadband reflectivity (28). This observation
suggests that direct coupling to the crystal struc-
ture may be responsible for the ultrafast transition
into the superconducting phase.

The detailed microscopic pathway that leads
to the superconducting state deserves further
discussion. As a working hypothesis, it is helpful
to relate our work to recent studies in striped
cuprates, in which evidence for low-temperature
2D superconductivity was found (32). A plausi-
ble explanation for the decoupling between dif-
ferent striped planes follows directly from the
crystallographic structure of the LTT phase (33),
in which stripes of neighboring planes are oriented
in perpendicular directions, whereas the next-
nearest planes exhibit a shift of a half stripe pe-
riod. This leads to a superconducting order that is
in antiphase between stripes within each plane,
and to canceling of the lowest-order Josephson
coupling between planes (34).

In our experiment, the Josephson effect is
reestablished when mid-IR pulses perturb the
stripe state, which we attribute to a direct dis-
tortion of the LTT structure by the mid-IR ra-
diation. The data of Fig. 4B provides a rise time
for the formation of the superconducting state
tSC < 1 to 2 ps, limited by the temporal resolution
of our measurement. This is a surprisingly short
time scale, and it is difficult to imagine how
mutually incoherent planes could synchronize so
rapidly. At 5 K, only the 100-GHz modes are

Fig. 2. Time-dependent 800-nm intensity re-
flectivity changes after excitation with IR pulses at
16 mm wavelength and ~1mJ/cm2 intensity. Photo-
excitation along the Cu-O planes results in the ap-
pearance of a long-lived meta-stable phase lasting
longer than 100 ps. Excitation with the electric field
polarized orthogonal to the Cu-O plane results in
minimal reflectivity changes.

Fig. 3. (A) Static c-axis electric field reflectance (r = Erefl/Einc)
of LSCO0.16, measured at a 45° angle of incidence above (black
dots) and below (red dots) Tc = 38 K. Here field reflectances r =
Erefl / Einc are measured, as opposed to intensity reflectivities
in the near-IR, because the time domain detection scheme
for short terahertz transients is sensitive to the electric field.

In the equilibrium low-temperature superconducting state, a Josephson plasma edge is clearly
visible, reflecting the appearance of coherent transport. This edge is fitted with a two-fluid model
(continuous line). Above Tc , incoherent ohmic transport is reflected in a featureless conductivity. (B)
Static c-axis reflectance of LESCO1/8 at 10 K. The optical properties are those of a nonsuperconducting
compound down to the lowest temperatures. (C) Transient c-axis reflectance of LESCO1/8, normalized
to the static reflectance. Measurements are taken at 10 K, after excitation with IR pulses at 16 mm
wavelength. The appearance of a plasma edge at 60 cm−1 demonstrates that the photoinduced state
is superconducting.

14 JANUARY 2011 VOL 331 SCIENCE www.sciencemag.org190
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transient c-axis reflectance: the signal of

Josephson plasma resonance

thermally populated, and no spontaneous fluctu-
ation could drive a process on time scales shorter
than 10 ps.

This short time scale supports a picture in
which information about the superconducting
state is already present in the system before ex-
citation. Indeed, if the planes were simply an-
ticorrelated at equilibrium, recoupling could occur
on a time scale needed to change the interplane
order parameter phase difference, reestablishing
the Josephson effect. This time scale may be very
fast, commensurate with the Josephson plasmon
period TJPR ~ 600 fs.

The temperature at which photoinduced su-
perconductivity disappears is near 10 to 20 K,
significantly below Tc = 35 K in LSCO0.16 and
similar to the Berezinskii-Kosterlitz-Thouless
temperature (TBKT = 16 K) found from transport
measurements in other striped compounds (3).
One can speculate that the disappearance of 2D
fluctuations for T < TBKT may be a necessary
condition for photoinduced recoupling.

At the earliest time scales, a key question re-
lates to the fate of stripe order once the Josephson
coupling has been established. Time-resolvedmea-
surements of the stripe order, possible by extending

soft x-ray scattering techniques (35) to the time
domain, could clarify whether superconductivity
emerges only in response to stripe melting, or, in
contrast, the two can coexist.

Our measurements have not probed the
dynamics beyond 100-ps time delays, although
no relaxation was found on that time scale. We
can thus deduce that the transient superconduct-
ing phase does not relax back for many nano-
seconds, possibly more. The long lifetime can be
understood by noting that once the 3D super-
conducting state is formed, the new broken sym-
metry leads to rigidity and to the formation of a
kinetic barrier, which stabilizes the superconduct-
ing state.

The present paper has demonstrated that
light can be used to affect phase competition
in the underdoped cuprates, allowing for the
emergence of a transient superconducting state
at temperatures where the striped phase is the
true ground state of the system. Similar photo-
stimulation could be used to explore a broader
region of the underdoped phase diagram, espe-
cially at doping levels and temperatures for which
the electronic structure is already gapped (36)
and signatures of quantum coherence are already

present, but 3D superconductivity is not estab-
lished (37).
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Fig. 4. (A) Time- and frequency-dependent imaginary conductivity s2(w,t) of LESCO1/8 at 10 K
after excitation with IR pulses at 16 mm wavelength. The appearance of a 1/w dispersion dem-
onstrates that the system becomes superconducting on the shortest time scales accessible here. (B)
Time-dependent plot of the normalized function ws2(w − >0,t), proportional to the condensate
density. (C) Transient measurement of the imaginary conductivity s2(w,5 ps), demonstrating that
for the fluence used here (<1 mJ/cm2), photoinduced superconductivity can only be induced for
base temperatures Tb < 20 K. (D) Photosusceptibility, defined as the inverse of the saturation
fluence plotted as a function of wavelength (red dots) compared to the reflectivity (black dots) of
LESCO1/8 measured in the ab plane. By means of a Drude-Lorentz fitting, the partial extinction
coefficient for the aphonon is extracted (dashed curve) and compared to the photosusceptibility.
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thermally populated, and no spontaneous fluctu-
ation could drive a process on time scales shorter
than 10 ps.

This short time scale supports a picture in
which information about the superconducting
state is already present in the system before ex-
citation. Indeed, if the planes were simply an-
ticorrelated at equilibrium, recoupling could occur
on a time scale needed to change the interplane
order parameter phase difference, reestablishing
the Josephson effect. This time scale may be very
fast, commensurate with the Josephson plasmon
period TJPR ~ 600 fs.

The temperature at which photoinduced su-
perconductivity disappears is near 10 to 20 K,
significantly below Tc = 35 K in LSCO0.16 and
similar to the Berezinskii-Kosterlitz-Thouless
temperature (TBKT = 16 K) found from transport
measurements in other striped compounds (3).
One can speculate that the disappearance of 2D
fluctuations for T < TBKT may be a necessary
condition for photoinduced recoupling.

At the earliest time scales, a key question re-
lates to the fate of stripe order once the Josephson
coupling has been established. Time-resolvedmea-
surements of the stripe order, possible by extending

soft x-ray scattering techniques (35) to the time
domain, could clarify whether superconductivity
emerges only in response to stripe melting, or, in
contrast, the two can coexist.

Our measurements have not probed the
dynamics beyond 100-ps time delays, although
no relaxation was found on that time scale. We
can thus deduce that the transient superconduct-
ing phase does not relax back for many nano-
seconds, possibly more. The long lifetime can be
understood by noting that once the 3D super-
conducting state is formed, the new broken sym-
metry leads to rigidity and to the formation of a
kinetic barrier, which stabilizes the superconduct-
ing state.

The present paper has demonstrated that
light can be used to affect phase competition
in the underdoped cuprates, allowing for the
emergence of a transient superconducting state
at temperatures where the striped phase is the
true ground state of the system. Similar photo-
stimulation could be used to explore a broader
region of the underdoped phase diagram, espe-
cially at doping levels and temperatures for which
the electronic structure is already gapped (36)
and signatures of quantum coherence are already

present, but 3D superconductivity is not estab-
lished (37).
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Fig. 4. (A) Time- and frequency-dependent imaginary conductivity s2(w,t) of LESCO1/8 at 10 K
after excitation with IR pulses at 16 mm wavelength. The appearance of a 1/w dispersion dem-
onstrates that the system becomes superconducting on the shortest time scales accessible here. (B)
Time-dependent plot of the normalized function ws2(w − >0,t), proportional to the condensate
density. (C) Transient measurement of the imaginary conductivity s2(w,5 ps), demonstrating that
for the fluence used here (<1 mJ/cm2), photoinduced superconductivity can only be induced for
base temperatures Tb < 20 K. (D) Photosusceptibility, defined as the inverse of the saturation
fluence plotted as a function of wavelength (red dots) compared to the reflectivity (black dots) of
LESCO1/8 measured in the ab plane. By means of a Drude-Lorentz fitting, the partial extinction
coefficient for the aphonon is extracted (dashed curve) and compared to the photosusceptibility.
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imaginary part of optical conductivity σ2(ω)

D. Fausti et al., Science 331, 189 (2011)
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Introduction: Ultrafast Spectroscopy

Theoretical Challenges

In nonequilibrium strongly correlated systems, we have to deal with
nonperturbative effects which can come from:

Correlation effects

Nonlinear effects due to strong external fields: redistribution of spectral
weight ...

In ultrafast spectroscopy, additionally we have to follow closely the rapid
microscopical changes, not only their long-time-average behaviors.
Are we calculating the same entity as the one measured in experiments? (Ref. ”Lectures

on the non-equilibrium theory of condensed matter” by L. Bányai)

Methods
Exact diagonalization (ED)

Time-dependent density-matrix renormalization group (tDMRG)

Nonequilibrium dynamical mean-field theory (nDMFT)

Time-dependent DFT

Hydrodynamical approach
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Optical Conductivity

An operational definition

j = σ E

Note that the time-reversal symmetry is explicitly broken!

σ(ω) measures the response of the system with respect to a monochromatic
perturbation field E (t) ∼ e−iωt :

j(ω) = σ(ω)E(ω)

Linear response theory (fluctuation-dissipation theorem)

Kubo (1957) told us that the conductivity can be calculated microscopically
in terms of the current-current correlations (KF) (H ∼ j · A):

σ(ω) ∼ 1

ωL

∫ +∞

0

e iωt〈[j(t), j(0)]〉dt

=
i

ωL

∫ +∞

−∞
e iωt(−i)θ(t)〈[j(t), j(0)]〉dt

=
i

ωL
χ(ω)
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Optical Conductivity

However, in nonequilibrium due to the absence of the time translation invariance,
a two-time response function is required:

j(t ′) =

∫ t′

−∞
σ(t ′, t)E(t)dt.

The response function σ(t′, t) measures the current response at t′ with respect to a perturbation

of an unit pulse at t.

Consequently, no unique definition for the time-dependent optical conductivity in
the frequency space.

e.g., see M. Eckstein et al., PRB 81, 115131 (2010); Z. Lenarčič et al., PRB 89, 125123 (2014)

We choose the one which reflects the causality (Z. Lenarčič et al., 2014)

σ(ω, t) :=

∫ ∞
0

σ(t + s, t)e iωs ds
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Optical Conductivity

From

j(t ′) =

∫ t′

−∞
σ(t ′, t)E (t)dt, σ(ω, t) =

∫ ∞
0

σ(t + s, t)e iωs ds

The Fourier transformation produces (t0 can be −∞, tM can be +∞)

j(ω) =

∫ tM

t0

σ(ω, t ′′)E (t ′′)e iωt
′′
dt ′′,

With time translational invariant: σ(ω, t) = σ(ω), we return back

j(ω) = σ(ω)E (ω).

What about the general case?
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Optical Conductivity

Recall that

j(ω) =

∫ tM

t0

σ(ω, t ′′)E (t ′′)e iωt
′′
dt ′′

In order to locate σ(ω, t), an obvious choice is to use the δ-electronic field:
E (t ′′) ∼ δ(t ′′ − t):

j(ω) = σ(ω, t)e iωt = σ(ω, t)E (ω) = σ(ω, t)(iωA(ω))

⇓

σ(ω, t) = j(ω)/iωA(ω)
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Pump-Probe Method

Pump-Probe Setup

photons photoexcited states

initial−relaxation
process

steady state
nonequilibrium−

relaxation through the outside
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Pump-Probe Method

Strategy: Weak Pulse as a Probe

Applying a weak probing pulse Aprobe(t) (in terms of the vector potential):

jprobe(t)
Fourier transformation−−−−−−−−−−−−→ jprobe(ω),

Aprobe(t)
Fourier transformation−−−−−−−−−−−−→ Aprobe(ω),

⇓
σ(ω) ∼ jprobe(ω)/i(ω + iη)LAprobe(ω)

E(ω) ∼ iωA(ω)

The current operator reads

ĵ(t) ∼ δH(t)

δA(t)
= −ith

∑[
e iA(t)c†i,σci+1,σ − H.c.

]
.

We call it the pump-probe (PP) method.
Note that in the Fourier transformation, the damping factor e−ηt is also added to jprobe(t) and

Aprobe(t), where η ∼ 1/L.
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Pump-Probe Method

Time-dependent Lanczos method

T. J. Park and J. C. Light, The Journal of Chemical Physics 85, 5870 (1986)

i
∂ψ(t)

∂t
= H(t)ψ(t).

We approximate the time evolution of |ψ(t)〉 by step-vise change of time t in
small increment δt. At each step, Lanczos basis with dimension M are generated
to follow the evolution

|ψ(t + δt)〉 ' e−iH(t)δt |ψ(t)〉 '
M∑
l=1

e−iεlδt |φl〉〈φl |ψ(t)〉.
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The Probe Dependence of the Optical Conductivity in Nonequilibrium Pump-Probe Method

One-Dimensional Half-Filled Extended Hubbard Model

by a function K! ! 1=4 " 0:061
!!!!!!!!!!!!!!!!!!!!!!!!
#Ut !U$=t

p
near the

tricritical point [see inset of Fig. 4(a)]. It implies that the
transition is of the Kosterlitz-Thouless type. Let us now
consider a point at which the BOW phase shrinks to 0,
which is called a ‘‘critical end point’’. The BOW state is
still stable around the tricritical point and therefore the
critical end point (Uc, Vc) would exist for Uc > Ut. For a
fixed U (>Ut), the BOW order parameter has a maximum
around the BOW-CDW boundary. To find the critical end
point, we plot hBi on the BOW-CDW boundary as a
function of U=t in Fig. 4(b). hBi decreases with increasing
U=t and reaches to 0 at #Uc; Vc$ " #9:25t; 4:76t$. For U %
Uc, the transition is always first-order SDW-CDW one.

In Fig. 5 we sum up our results as the ground-state phase
diagram. One can see good agreement with the weak-
coupling renormalization group (RG) results [11] as well
as the strong-coupling perturbation results [9]. The BOW
phase has a maximum width at U& 4t, which is concerned
with the fact that the effective nearest-neighbor exchange
interaction is the largest at the intermediate couplings of U
in the half-filled Hubbard model [25]. It is so because the
large exchange interaction promotes the formation of spin-
singlet pair if the charge fluctuation is introduced by V.
Accordingly, we confirm that the magnitude of the spin gap
is maximized around U & 4t in the BOW phase.

In summary, we study the ground-state phase diagram of
the 1D half-filled EHM using DMRG method. We calcu-
late several quantities with considerable accuracy to deter-
mine the SDW-BOW and BOW-CDW boundaries. As for
the phase boundaries, our data agree quantitatively with the
RG results in the weak-coupling regime (U & 2t), with the

perturbation results in the strong-coupling regime (U *
6t), and with the QMC results in the intermediate-coupling
regime. We also find that the BOW-CDW transition
changes from continuous to first order at the tricritical
point #Ut; Vt$ " #5:89t; 3:10t$ and it locates far from the
critical end point #Uc; Vc$ " #9:25t; 4:76t$. Since the pre-
vious DMRG results could be insufficient in accuracy, our
results are not in agreement with them. We thus believe
that our DMRG results bring a sound conclusion and put an
end to the controversy on the phase diagram of the 1D half-
filled EHM.

We would like to thank R. M. Noack, E. Jeckelmann, F.
Gebhard, S. Glocke, and J. Sirker for useful discussions.
We are grateful to M. Tsuchiizu for his RG results and
helpful discussions.
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FIG. 5 (color online). DMRG phase diagram of the 1D half-
filled EHM. The BOW phase exists between the SDW and CDW
phases.

PRL 99, 216403 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 NOVEMBER 2007

216403-4

Hopping: −th
∑

i c
†
i,σci+1,σ + H.c.

U-term: U
∑

i ni↑ni↓

V -term: V
∑

i (ni − 1)(ni+1 − 1)

First order phase transition in equilibrium
happens around U ≈ 2V between SDW
and CDW, driven by the competition
between energy cost for doublon
generation and energy reward due to the
attraction between doublon-holon pairs.

S. Ejima and S. Nishimoto, PRL 99, 216403 (2007)
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Two types of the probe pulse

t
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A
probe

(t)

t
probe

E
probe

(t)

t
probe

A
probe

(t)

PP−step

PP−ramp with 2*t
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d 

Schematic illustration of Aprobe(t) and Eprobe(t)

for the Gaussian pulse ((a), (b)) and step-like

pulse ((c), (d)) with various widths.

Gaussian pulse (PP-Gaussian)

Aprobe(t) = A0e
−(t−t0)2/2t2

d cos [ω (t − t0)] ,

td → 0, Aprobe(t)→ δ(t − t0)

Step-like pulse (PP-ramp & -step)

Aprobe ∼ A0,stepθ(t − t0),

Eprobe(t) ∼ δ(t − t0)
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Illustration in the Equilibrium (T = 0)
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(b) Periodic BC

ω

(a) open BC; (b) periodic BC. L = 10, U = 10, V = 4.5; half-filling. Note that there is

nonzero Drude weight in the periodic BC for finite systems even at the insulating phase.

In equilibrium both NLR and VNLR produce identical results, which also coincide with the

PP method.

(N)KF: (nonequilibrium) Kubo formula

NLR: nonequilibrium linear response

VNLR: a variant of NLR

Details will be explained later.
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Probing-Pulse-Width Dependence

0 1 3 5 7

−1

0

1

2

3

4

ω

R
e

σ(
ω

)
t
d,probe

=0.02

t
d,probe

=0.2

t
d,probe

=0.4

t
d,probe

=0.6

(a) PP−Gaussian
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(b) PP−ramp

L = 10, U = 10, V = 4.5, half-filling & T = 0. (a) By PP-Gaussian with ωprobe = 10, and

A0,probe = 1.0× 10−6. (b) By PP-ramp with A0,step = 1.0× 10−4.

Finite width affects Aprobe(ω):

PP-Gaussian: a variance of 1/t2
d,probe around ωprobe

PP-ramp: Aprobe(ω) exponentially decays with rate ∼ t2
d,probe

Basically, with td,probe → 0, they are converged in equilibrium.
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Generalize to Nonequilibrium: the PP Method

Towards nonequilibrium:

σ(ω, tprobe) =
jprobe(ω, tprobe)

i(ω + iη)LAprobe(ω)
,

where tprobe is the probing time.

jprobe(t ′) =

∫ t′

t0

σ(t ′, t ′′)Eprobe(t ′′)dt ′′,

jprobe(ω) =

∫ tM

t0

jprobe(t ′)e iωt
′
dt ′ =

∫ tM

t0

σ(ω, t ′′)Eprobe(t ′′)e iωt
′′
dt ′′

In order to obtain σ(ω, t), a narrow probe pulse at the moment t is preferred,
which is consistent with the ultrafast spectroscopy setup.

Checking...

see Can Shao et al., PRB 93, 195144 (2016)
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A pump case: A0,pump = 0.2, ωpump = 6.29 (resonant frequency), and td,pump = 0.5. In

PP-Gaussian, td,probe = 0.02. Parameters: L = 10, U = 10, V = 3. Half-filling.
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(b) π−quench
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A π-quench in the hopping terms is applied at t = 0. Parameters: L = 10, U = 10,

V = 3. Half-filling.
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(f) U−quench

A U-quench: U changes from 10 to 4 at t = 0. Parameters: L = 10, V = 3. Half-filling.

Different probing pulses (Gaussian vs step-like) produce different σ(ω, t)!

We have verified numerically

NLR ∼ PP-step

VNLR ∼ PP-Gaussian as td,probe → 0
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Two Different Theoretical Approaches

j(t ′) =

∫ t′

−∞
σ(t ′, t)E (t)dt σ(ω, t) =

∫ ∞
0

σ(t + s, t)e iωs ds

the nonequilibrium linear response (NLR) (for a pure state)

σ(t ′, t) =
1

L

[
〈ψ(t ′)|τ |ψ(t ′)〉+

∫ t′

t

χ(t ′, t ′′)dt ′′

]
, t ′ ≥ t

where in the diamagnetic term, τ = th
∑
i,σ

(c†i+1,σci,σ + H.c.) ∝ kinetic energy,

and

χ(t ′, t ′′) = −iθ(t ′ − t ′′)〈ψ(t)|[j I (t ′), j I (t ′′)]|ψ(t)〉,
j I (t ′) = U(t, t ′)jU(t ′, t).

e.g., see Z. Lenarčič et al., PRB 89, 125123 (2014)
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The Temporal Correlations in NLR

σ(t ′, t) =
1

L

[
〈ψ(t ′)|τ |ψ(t ′)〉+

∫ t′

t

χ(t ′, t ′′)dt ′′

]

NLR

VNLR

t t′′ t′...

t ...

...

... t′t′′

NLR

VNLR

t t′′ t′...

t ...

...

... t′t′′

We have learned that PP-step ∼ NLR; the two are consistent.
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NKF and VNLR

A generalized Kubo formula (NKF)

Reσreg(ω, t) =
1

ωL
Im

∫ ∞
0

ie i(ω+iη)s〈ψ(t)|[j I (t + s), j I (t)]|ψ(t)〉ds

e.g., in D. De Filippis et al., PRL 109, 176402 (2012)

The generalized Kubo formula actually can be derived from a variant of the
response function (VNLR):

σ̃(t ′, t) =
1

L

[
〈ψ(t ′)|τ |ψ(t ′)〉+

∫ t′

t

χ(t ′′, t)dt ′′

]
, t ′ ≥ t

where
χ(t ′′, t) = −iθ(t ′′ − t)〈ψ(t)|[j I (t ′′), j I (t)]|ψ(t)〉
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The Temporal Correlations in VNLR

σ̃(t ′, t) =
1

L

[
〈ψ(t ′)|τ |ψ(t ′)〉+

∫ t′

t

χ(t ′′, t)dt ′′

]
NLR

VNLR

t t′′ t′...

t ...

...

... t′t′′

NLR

VNLR

t t′′ t′...

t ...

...

... t′t′′

We can show that the δ-like vector potential A (PP-Gaussian when td → 0)
∼ VNLR.
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Additional Note
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(b) t=5

U-quench from U = 0 to 2 at t = 0. Parameters: L = 10, V = 0.

Message: In nonequilibrium, the difference between NLR (PP-step) and VNLR
(PP-Gaussian) can be significant in the early stage of the evolution.
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Conclusions

We have raised the issue of the probe-pulse dependence in the calculation of
the time-resolved optical conductivity σ(ω, t).

Different formulas for σ(ω, t) in the literature actually describe the outcomes
of different probing pulses.

The nature of the probe pulses should be closely examined in the analysis of
ultrafast THz spectroscopy data.
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T H A N K Y O U
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