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Open Systems 

Quantum Dissipation Theory / Master Equation /  
Liouville-von Neumann Equation: model systems 
                        (one or two levels) 

𝐇=𝐇𝐒+𝐇𝐁+𝐇𝐒𝐁  	


particle 

energy	


𝑩	


S	


First-principles method 
for open systems ? 

 i dρ/dt = [H, ρ] – i Rρ   	
 ρ: density matrix of system 



ρ(r,t)             Excited state properties 

HK Theorem  P. Hohenberg & W. Kohn, Phys. Rev. 136, B864 (1964) 

ü  Ground-state density functional theory (DFT) 

]  Role of Electron Density Function ρ(r)  

ü  Time-dependent DFT for excited states (TDDFT) 

RG Theorem  E. Runge & E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984) 
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H ψ = E ψ 

SchrÖdinger Equation for electrons 

Hamiltonian 
H = - (h2/2me)∑i∇i

2 - ∑i ∑α Ζαe2/riα + ∑i ∑j e2/rij 

What do we solve usually? 
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Ψ is analytical except (i) ri= Rα; & (ii) ri= rj	




A real function is said to be analytic if 
it possesses derivatives of all orders 
and agrees with its Taylor series in the 
neighborhood of every point 
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Holographic Electron Density Theorem 
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]  Holographic electron density theorem for 
time-independent systems   

Zheng, Wang, Yam, Mo & GHC, Phys. Rev. B75 195127 (2007) 
Zheng, Wang Yam & GHC, Phys. Chem. Chem. Phys. 14, 4695 (2012) 	


U 
x0 

W 

ρ(r) 
. 

 ρ(r) is real analytical 

W 

W 
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ρD(r,t)            v(r,t) 	


D 

ρ(r,t) 
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Rung & Gross, Phys. Rev. Lett. (1985):


D 
ρ(r,t) 
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H Ψ = E Ψ 
Hˊ Ψˊ = Eˊ Ψˊ 
 

If  Ψˊ = Ψ	


	



(V-Vˊ) Ψ = (E-Eˊ)Ψ	


 

thus 
V-Vˊ= E-Eˊ	


or 
Ψ = 0 & V-Vˊ≠ const. 
for subspaces, which is false: 
Because V-Vˊ/Ψ is analytical 

Ψ 

Riess & Munch, Theoret. Chim. Acta (Berl.) 58, 295 (1981) 



Time-dependent holographic electron density theorem 

ρD(r,t)            v(r,t)            system properties 

Zheng, Wang, Yam, Mo & Chen, Phys. Rev. B (2007). 

ρ(r,t) 
ρD	


Existence of a rigorous TDDFT for Open System 
X. Zheng and G.H. Chen, arXiv:physics/0502021 (2005) 
Zheng, Wang, Yam, Mo & Chen, PRB 75, 195127 (2007) 

The electron density distribution of  
a sub-system determines all physical 
Properties of the entire system! 
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L LD LR

DL D DR

RL RD R

σ σ σ

σ σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i σ (t) = h(t),σ (t)!" #$

σ ij (t) = a j
†(t)ai (t)

i σ nm = (hnlσ lm −σ nlhlm )− i Qα ,nm
α=L,R
∑

l∈D
∑

Qα ,nm = i (hnkασ kαm
−σ nkα

hkαm )
kα∈α
∑

Qα ,nm(t) = − dτ Gnl
< (t,τ )Σα ,lm

a (τ ,t)+Gnl
r (t,τ )Σα ,lm

< (τ ,t)+H.c.#
$

%
&−∞

∞

∫
l∈D
∑

Zheng, Wang, Yam, Mo & Chen, PRB 75, 195127 (2007) 

Density 
matrix 

Liouvile-von Neumann Eq. 



Langreth & Nordlander, PRB 43, 2541 (1991)  
Zheng, Wang, Yam, Mo & GHC, PRB 75, (2007) 

Qα ,nm(t) = − dτ Gnl
< (t,τ )Σα ,lm

a (τ ,t)+Gnl
r (t,τ )Σα ,lm

< (τ ,t)+H.c.#
$

%
&−∞

∞

∫
l∈D
∑



EXACT !!!! 

1st-tier  
Auxiliary  
Density matrix 

2nd -tier  
Auxiliary  
Density matrix 

Exact TDDFT for Quantum Transport	

Xiao Zheng, Guanhua Chen, Yan Mo, Siukong Koo, Heng Tian, ChiYung Yam, & 
YiJingYan, “Time-dependent density functional theory for quantum transport”,  
Journal of Chemical Physics 133, 114101 (2010)  

iQα 

 
Integration   è Summation 

 



Heng TIAN 

Scheme Two: Chebyshev Spectral Decomposition 
 non-Markovian 
 Zero & finite temperatures 
 CPU Time ∝ O(N3) 

Scheme One:  Lorentzian-Padé Decomposition 
 Self-energy decomposition 
 non-Markovian, finite temperatures 

   CPU Time ∝ O(N3) 

Two Numerical Schemes	


Hang XIE 
Zheng et. al. JCP 133, 114101 (2010)  
Xie et. al. J. Chem. Phys. 137, 044113 (2012)      	


Physical Review Letters

An e�cient solution of Liouville-von Neumann equation that is

applicable to zero and finite temperatures

Heng Tian1, ⇤ and GuanHua Chen1, 2, 3, †

1Department of Chemistry, The University of Hong Kong, Hong Kong

2Department of Physics, The University of Hong Kong, Hong Kong

3Centre for Theoretical and Computational Physics,

The University of Hong Kong, Hong Kong

(Dated: July 15, 2012)

Abstract

Application of quantum dissipation theory to electronic dynamics has been limited to model

systems with few energy levels, and its numerical solutions are mostly restricted to high tempera-

tures. A highly accurate and e�cient numerical algorithm, which is based on Chebyshev spectral

method, is developed to integrate a single-particle Liouville-von Neumann equation, and thus, the

two long-standing limitations of quantum dissipation theory are resolved in the context of quantum

transport. Its computational time scales to O(N3) with N being the number of orbitals involved,

which leads to a reality for the quantum mechanical simulation of real open systems containing

hundreds or thousands of atomic orbitals. More importantly, the algorithm spans both finite and

zero temperatures. Numerical calculations are carried out to simulate the transient current through

a metallic wire at zero and finite temperatures.

1
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Tian and GHC, J. Chem. Phys. 137, 044113 (2012)      	




Scheme One: Lorentzian-Padé Decomposition 

i ϕαk = hD (t)− iγαk −Δα (t)#$ %&ϕαk (t)

+i σ D (t)Aαk
> +σ D (t)Aαk

<#
$

%
&

+ ϕαk ,α 'k '(t)
k '=1

Nk

∑
α '

∑
1st-tier  
Auxiliary  
Density matrix 

i ϕαk ,α !k ! = − iγαk +Δα (t)− iγα !k ! − Δα !(t)$% &'ϕαk ,α !k !(t)

+i Aα !k !
> − Aα !k !

<( )ϕαk (t)

−iϕα !k !
† (t) Aαk

> − Aαk
<( )

2nd -tier  
Auxiliary  
Density matrix 

i σ D = hD ,σ D
!" #$− i Qα (t)

α=L,R
∑ Qα (t) = i ϕαk (t)−ϕαk

† (t)"
#

$
%

k=1

Nk

∑

Self-energy: Lorentzian expansion 
Fermi function: Padé expansion Zheng et. al. JCP 133, 114101 (2010)  

Xie et. al. JCP 137, 044113 (2012)      	
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Thereby the quantum Liouville equation reads
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Here, the second equality results from trace cycling invariance property; and the fourth follows the definition of first-
tier auxiliary RSDM, '

↵,µ⌫

(t) ⌘ trT [b̃†↵⌫

(t) a
µ

⇢̃
T

(t)], as well as its Hermitian conjugate '†
↵,µ⌫

(t) = trT [a
†
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(t)⇢̃
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(t)];
and the sixth follows the definition of the frequency-dispersed first-tier auxiliary RSDM
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Obviously, we have

'
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(x, t) (28)
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dx e�i⌦x(t�t0)'†
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(x, t). (29)

Next, we establish the EOM for the first-tier auxiliary RSDM, '
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(x, t) just from its definition, as follows,
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. (30)
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Here, ⇤
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After separating this part out of the original one, the remnant can be defined as the second-tier auxiliary RSDM,
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The final form of EOM Eq. (30) for the first-tier auxiliary RSDM, '
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(x, t) +
X

µ

0

h
µµ

0'
↵,µ

0
⌫

(x, t)

�
X

µ

0

�
µµ

0(t)⇤
↵,µ

0
⌫

(x, t) + f�
↵

(x)⇤
↵,µ⌫

(x, t)

+ ⌦
X

↵

0

Z

1

�1
dx0 e�i⌦x

0
(t�t0) 

↵

0
↵,µ⌫

(x0, x, t). (33)

Based on Eq. (32), it is relatively easy to obtain the EOM for the second-tier auxiliary RSDM,  
↵

0
↵,µ⌫

(x0, x, t), as
follows

 ̇
↵

0
↵,µ⌫

(x0, x, t)

= i [�
↵

(t) + !̄] 
↵

0
↵,µ⌫

(x0, x, t)� i [�
↵

0(t) + !̄]'
↵

0
↵,µ⌫

(x0, x, t) + trT
⇥

b̃†
↵⌫

(x, t) b̃
↵

0
µ

(x0, t) ˙̃⇢
T

(t)
⇤

= i [�
↵

(t)��
↵

0(t)] 
↵

0
↵,µ⌫

(x0, x, t)� i
X

µ

0

⇤⇤
↵

0
,µµ

0(x0, t)'
↵,µ

0
⌫

(x, t) + i
X

µ

0

'†
↵

0
,µµ

0(x0, t)⇤
↵,µ

0
⌫

(x, t). (34)

Now, the HEOM(26),(33) and (34) have been established as the exact framework in this work, which can be verified
to be equivalent to Eqs. (3),(4) and (5).

III. NEW PRACTICAL APPROACH

In fact, it is the the dissipation functional11,16 Q
↵

(t)

Q
↵

(t) = �i
⇥

'
↵

(t)�'†
↵

(t)
⇤

= �i⌦



Z

1

�1
dx e�i⌦x(t�t0)'

↵

(x, t)

�ei⌦x(t�t0)'†
↵

(x, t)
i

, (35)
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Here, ⇤
↵,µ⌫

(x, t) ⌘
P

k2↵

�(⌦x+!̄�✏
↵k

)t⇤
↵kµ

t
↵k⌫

e�i⌦x(t�t0) is introduced, and when t = t
0

it reduces to the so-called
line-width matrix ⇤

↵,µ⌫

(x) = �=⌃r

↵,µ⌫

(x)/⇡, where the self energy ⌃r

↵

(x) results from the open system boundary
conditions of the device in the presence of the semi-infinite electrode ↵.
It is apt to mistake the last term for

� i⌦
X

↵

0

X

k2↵

X

k

02↵

0

Z

1

�1
dx0 �(⌦x+ !̄ � ✏

↵k

) �(⌦x0 + !̄ � ✏
↵

0
k

0)e�i⌦x(t�t0)

⇥ t
↵k⌫

t⇤
↵

0
k

0
µ

�
↵↵

0�
kk

0
⇥

if
↵

(✏
↵k

)
⇤

= �i⇤
↵,µ⌫

(x, t) f�
↵

(x), (31)

where f
↵

(✏) = 1/[exp{�
↵

(✏� µ
↵

)} + 1] is the Fermi distribution function for the electrode ↵ at temperature T
↵

=
1/(k

b

�
↵

) along with µ
↵

being the equilibrium Fermi energy for the electrode ↵; f�
↵

(x) = f
↵

(⌦x+ !̄) is introduced to
simplify the notation. In the partition-free scheme5 employed here, the whole system without any bias voltage should
possess an unique equilibrium Fermi energy µ

0

and an unique temperature T , as required by the grand canonical
ensemble, thus f�

↵

(x) is the same for di↵erent ↵. In fact, this expression (31) corresponds to an extreme situation
where there is no tunneling between the device and the electrode, with the density matrix being denoted as ⇢̃

T

(�1).
That is to say,

�i⌦
X

↵

0

Z

1

�1
dx0 e�i⌦x

0
(t�t0)trT

�

b̃†
↵⌫

(x, t) b̃
↵

0
µ

(x0, t) ⇢̃
T

(�1)
 

= �i⇤
↵,µ⌫

(x, t) f�
↵

(x).

After separating this part out of the original one, the remnant can be defined as the second-tier auxiliary RSDM,

 
↵

0
↵,µ⌫

(x0, x, t) = trT
�

b̃†
↵⌫

(x, t) b̃
↵

0
µ

(x0, t) [⇢̃
T

(t)� ⇢̃
T

(�1)]
 

. (32)

The final form of EOM Eq. (30) for the first-tier auxiliary RSDM, '
↵,µ⌫

(!, t), turns out to be

i'̇
↵,µ⌫

(x, t) = � [�
↵

(t) + !̄]'
↵,µ⌫

(x, t) +
X

µ

0

h
µµ

0'
↵,µ

0
⌫

(x, t)

�
X

µ

0

�
µµ

0(t)⇤
↵,µ

0
⌫

(x, t) + f�
↵

(x)⇤
↵,µ⌫

(x, t)

+ ⌦
X

↵

0

Z

1

�1
dx0 e�i⌦x

0
(t�t0) 

↵

0
↵,µ⌫

(x0, x, t). (33)

Based on Eq. (32), it is relatively easy to obtain the EOM for the second-tier auxiliary RSDM,  
↵

0
↵,µ⌫

(x0, x, t), as
follows

 ̇
↵

0
↵,µ⌫

(x0, x, t)

= i [�
↵

(t) + !̄] 
↵

0
↵,µ⌫

(x0, x, t)� i [�
↵

0(t) + !̄]'
↵

0
↵,µ⌫

(x0, x, t) + trT
⇥

b̃†
↵⌫

(x, t) b̃
↵

0
µ

(x0, t) ˙̃⇢
T

(t)
⇤

= i [�
↵

(t)��
↵

0(t)] 
↵

0
↵,µ⌫

(x0, x, t)� i
X

µ

0

⇤⇤
↵

0
,µµ

0(x0, t)'
↵,µ

0
⌫

(x, t) + i
X

µ

0

'†
↵

0
,µµ

0(x0, t)⇤
↵,µ

0
⌫

(x, t). (34)

Now, the HEOM(26),(33) and (34) have been established as the exact framework in this work, which can be verified
to be equivalent to Eqs. (3),(4) and (5).

III. NEW PRACTICAL APPROACH

In fact, it is the the dissipation functional11,16 Q
↵

(t)

Q
↵

(t) = �i
⇥

'
↵

(t)�'†
↵

(t)
⇤

= �i⌦



Z

1

�1
dx e�i⌦x(t�t0)'

↵

(x, t)

�ei⌦x(t�t0)'†
↵

(x, t)
i

, (35)
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H
↵C

=
X

µ

X

k2↵

t
↵kµ

d†
↵k

a
µ

+H.C., (16)

of which, a†
µ

(a
⌫

) creates(annihilates) an electron in the corresponding orthonormal basis |�
µ

i(|�
⌫

i) of the device part,
and d†

↵k

(d
↵k

) creates(annihilates) an electron in the eigenstate |k
↵

i of the electrode ↵. And accordingly, h
µ⌫

=

hµ|ĥ(r, t)|⌫i , ✏
↵k

= hk
↵

|ĥ(r, t)|k
↵

i, and t
↵kµ

= hk
↵

|ĥ(r, t)|µi.
It is more convenient to work in the reservoir H

B

-interaction picture12, where H
B

=
P

↵

H
↵

. Note that

{a†
µ

, d
↵k

} = 0 = {a
µ

, d†
↵k

}, hence,
⇥

a†
µ

,H
B

⇤

= 0 = [a
µ

,H
B

] , which follows that a†
µ

’s and a
µ

’s stay the same un-
der the transformation between the Schrödinger picture and the H

B

-interaction picture. After transformation into
this interaction picture, the Hamiltonian H

T

becomes

H̃
T

(t) = H
C

+
X

↵

H̃
↵C

(t) , (17)

where

H̃
↵C

(t) =
X

µ

h

b̃†
↵µ

(t) a
µ

+ a†
µ

b̃
↵µ

(t)
i

, b̃†
↵µ

(t) =
X

k

t
↵kµ

d̃†
↵k

(t) .

To facilitate later derivation, some items are clarified from the beginning. As is known, any physical Hamiltonian
should be bounded from below, so is H

↵

. Besides, H
↵

is also bounded from above. Thereby, in this work, the whole
discussion is restricted to the case where the spectral ✏

↵k

’s are the same for di↵erent ↵ and at least piece-wisely
continuously distributed in a finite interval [!

min

, !
max

].
In the H

B

-interaction picture,

˙̃
d†

↵k

(t) = �i
⇥

d̃†
↵k

(t),H
B

⇤

= i [✏
↵k

+�
↵

(t)] d̃†
↵k

(t)

d̃†
↵k

(t) = ei
R

t

t0
[✏

↵k

+�

↵

(⌧)]d⌧

d̃†
↵k

. (18)

in which �
↵

(t) is the rigid uniform shift for all single-electron levels in electrode ↵ under the time-dependent voltage
on this electrode33. Thus,

b̃†
↵µ

(t) =
X

k2↵

t
↵kµ

d̃†
↵k

ei
R

t

t0
d⌧ [✏

↵k

+�

↵

(⌧)]

=
X

k2↵

Z

!

max

!

min

d! �(! � ✏
↵k

) ei!(t�t0) t
↵kµ

d̃†
↵k

ei
R

t

t0
d⌧�

↵

(⌧)

. (19)

Here, the same trick as the multiple-frequency-dispersed scheme in Ref. 12 is utilized. It is advantageous to work with
the canonical interval [�1, 1]. Here, having introduced two constants

!̄ =
!

max

+ !
min

2
, ⌦ =

!
max

� !
min

2
,

the integrating interval [!
min

, !
max

] can be mapped into [�1, 1] via x(!) = (! � !̄) /⌦, and accordingly,

b̃†
↵µ

(t) = ⌦
X

k2↵

Z

1

�1
dx �(⌦x+ !̄ � ✏

↵k

) ei⌦x(t�t0) t
↵kµ

d̃†
↵k

ei
R

t

t0
d⌧(�

↵

(⌧)+!̄)

. (20)

Let

b̃†
↵µ

(x, t) =
X

k2↵

� (⌦x+ !̄ � ✏
↵k

) t
↵kµ

d̃†
↵k

ei
R

t

t0
d⌧(�

↵

(⌧)+!̄)

, (21)

we have

b̃†
↵µ

(t) = ⌦

Z

1

�1
dx ei⌦x(t�t0)b̃†

↵µ

(x, t), b̃
↵µ

(t) = ⌦

Z

1

�1
dx e�i⌦x(t�t0)b̃

↵µ

(x, t), (22)
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where

⇤
↵,k

= (2� �
k,0

)

Z

1

�1
dxT

k

(x)⇤
↵

(x). (43)

It seems that ⌅
↵,k

(t) =
R

1

�1 dxT
k

(x)f�
↵

(x)⇤
↵

(x, t) in Eq. (40) can not be more easily evaluated otherwise than by
the same Eq. (38) based strategy,

⌅
↵,k

(t) =

Z

1

�1
dxT

k

(x)f�
↵

(x)⇤
↵

(x)e�i⌦x(t�t0)

=
1
X

n=1

(�i)nJ
n

(⌦(t� t
0

))

Z

1

�1
dx f�

↵

(x)T
k+n

(x)⇤
↵

(x)

+
1
X

n=1

(�i)nJ
n

(⌦(t� t
0

))

Z

1

�1
dx f�

↵

(x)T|k�n| (x)⇤↵

(x)

+ J
0

(⌦(t� t
0

))

Z

1

�1
dx T

k

(x)f�
↵

(x)⇤
↵

(x) (44)

The time independent part of Eq. (44) is expected to be provided beforehand.
By the way, the analytical continuation, if exists, of f�

↵

(x) is not analytic in the whole complex plane, but f�
↵

(x)
itself is smooth enough in the interval [�1, 1], so ⌅

↵,k

(t
0

) will generally decay geometrically to zero, and faster for
higher temperature.
Similar manipulation can be applied to Eq. (34), which is just a verbatim repetition of the procedure leading to

Eq. (40). Heretofore, we have completed the discretization of HEOM(26),(33) and (34), which now reduce into the
following set of coupled ordinary di↵erential equations(ODEs).

i�̇ (t) = [h(t),� (t)]�
X

↵

1
X

k=0

⇥

⌦ikJ
k

(⌦(t� t
0

))'
↵,k

(t)�H.C.
⇤

, (45)

i'̇
↵,k

(t) = [h (t)� !̄ ��
↵

(t)]'
↵,k

(t) + (2� �
k,0

) [⌅
↵,k

(t)� � (t)⇧
↵,k

(t)]

+
X

↵

0

1
X

k

0
=0

(�i)k
0
⌦J

k

0(⌦(t� t
0

)) 
↵

0
k

0
,↵k

(t), (46)

i ̇
↵

0
k

0
,↵k

(t) = (2� �
k

0
0

)⇧⇤
↵

0
,k

0(t)'
↵,k

(t)� (2� �
k0

)'†
↵

0
,k

0(t)⇧
↵,k

(t)

+ [�
↵

0 (t)��
↵

(t)] 
↵

0
k

0
,↵k

(t) , (47)

where ⌅
↵,k

(t)’s and ⇧
↵,k

(t)’s are obtained from Eqs. (44)and(42), respectively.
Here, it is high time to stress the advantage of this new approach. From Ref. 44, we learn that

J
n

(t) ⇠ 1p
2⇡n

✓

te

2n

◆

n

as n!1, for a given t, (48)

which indicates that J
n

(t) decays spectrally45 for increasing n. Therefore, the series in Eqs. (45),(46),(42) and (44)
can be truncated after M terms, with M being around 1.5⌦(t � t

0

), if ⌦(t � t
0

) is large enough; thus there is no
need to worry about the convergence problem. In the meantime the ensuing truncation error can be made negligible,
if criterion of trunction is appropriately chosen and the initial condition is exactly evaluated, compared with the
numerical error of ODE solver. Consequently, the error mainly comes from the practical numerical integrator of
ODE, e.g. fourth-order Runge-Kutta algorithm.
Obviously, as the propagation time goes longer, more and more '

↵,k

(t)’s will contribute to the transient dynamics.
More specifically, in numerical implementation, it is the desired span of maximum propagation time multiplied by the
system-dependent constant ⌦ that determines the number of '

↵,k

(t)’s as well as  
↵

0
k

0
,↵k

(t)’s needed. Be cautious that
although at early stage only the first few '

↵,k

(t)’s are included in summation, it is indispensable to simultaneously
update the whole set of unknown matrices involved from the very start till the end.
Naturally, the resulting Eqs. (45),(46) and (47) can be parallelized, making its solution much more e�cient.
Moreover, in striking contrast to partial fraction expansion of the Fermi distribution function16,34 with the purpose

of approximating Fermi distribution function f�
↵

(x) on the whole real axis as good as possible, in the present approach,
whether the actural behavior of f�

↵

(x) outside the interval [�1, 1] can be reproduced is not of concern.
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which a↵ects the dynamics of RSDM, and the transient current

I
↵

(t) = �trT [Q↵

(t)] , (36)

that are of primary concern, but not '
↵

(x, t) or  
↵

0
↵

(x0, x, t) themselves. This is the main guideline for the develop-
ment of the new practical method to solve the HEOM. As is seen in Eq. (35), in order to obtain the Q

↵

(t), the finite
range Fourier transform with respect to x must be performed. However, it is unwise to blindly apply the common
quadrature rules such as Gaussian quadrature to the integration of oscillatory function, especially the Fourier kernel
function35 e�ixt. Moreover, the analytic expression of the function '

↵

(x, t) is unavailable, which prohibits the devising
of the quadrature rule grounded on the characteristic of this function.
Actually, the high precision quadrature rules of the Fourier integral of the same kind as Eq. (35) can be traced back

to the 1960s by Bakhvalov & Vasil’eva36, and the 1970s by Patterson37. The technique of the latter has its origin in
the famous Jacobi-Anger identity,

eitx = J
0

(t) +
1
X

n=1

2inJ
n

(t)T
n

(x) 8t 2 R,8x 2 [�1, 1]. (37)

Here, J
n

(t) is the Bessel function of the first kind of integer order, and T
n

(x) is the Chebyshev polynomial of the
first kind20,21. This identity in e↵ect decomposes the Fourier kernel e�ixt into Chebyshev polynomials with respect
to the argument x 2 [�1, 1] in the spirit of the method of separation of variables. In the context of our problem, the
following decomposition

e�i⌦x(t�t0) = J
0

(⌦(t� t
0

)) +
1
X

n=1

2(�i)nJ
n

(⌦(t� t
0

))T
n

(x) (38)

makes the integral in Eq. (35) ready to calculate, provided that the following modified moment

'
↵,k

(t) = (2� �
k,0

)

Z

1

�1
dxT

k

(x)'
↵

(x, t), k 2 N, (39)

is known. Here, '
↵,k

(t) for any time t > t
0

can be thought of as the solution of its EOM,

i

2� �
k,0

'̇
↵,k

(t) = i

Z

1

�1
dxT

k

(x)'̇
↵

(x, t)

= [h (t)� !̄ ��
↵

(t)]
'

↵,k

(t)

2� �
k,0

+ ⌦
1
X

k

0
=0

(�i)k
0
J

k

0(⌦(t� t
0

))

2� �
k,0

 
↵

0
k

0
,↵k

(t)

� � (t)
Z

1

�1
dxT

k

(x)⇤
↵

(x, t) +

Z

1

�1
dx T

k

(x)f�
↵

(x)⇤
↵

(x, t) (40)

in which the modified moment

 
↵

0
k

0
,↵k

(t) = (2� �
k

0
,0

)(2� �
k,0

)

Z

1

�1
dx0 T

k

0(x0)

Z

1

�1
dx T

k

(x) 
↵

0
,↵

(x0, x, t) (41)

is introduced.
It is observed that the integral ⇧

↵,k

(t) =
R

1

�1 dxT
k

(x)⇤
↵

(x, t) in Eq. (40) can be calculated independently, also on
the basis of Eq. (38),

⇧
↵,k

(t) =

Z

1

�1
dxT

k

(x)⇤
↵

(x)e�i⌦x(t�t0)

=
J
0

(⌦(t� t
0

))⇤
↵,k

2� �
k,0

+
1
X

n=1

(�i)nJ
n

(⌦(t� t
0

))⇤
↵,k+n

2

+
1
X

n=1

(�i)nJ
n

(⌦(t� t
0

))⇤
↵,|k�n|

2� �
k,n

(42)
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(t), the finite
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quadrature rules such as Gaussian quadrature to the integration of oscillatory function, especially the Fourier kernel
function35 e�ixt. Moreover, the analytic expression of the function '
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(x, t) is unavailable, which prohibits the devising
of the quadrature rule grounded on the characteristic of this function.
Actually, the high precision quadrature rules of the Fourier integral of the same kind as Eq. (35) can be traced back

to the 1960s by Bakhvalov & Vasil’eva36, and the 1970s by Patterson37. The technique of the latter has its origin in
the famous Jacobi-Anger identity,

eitx = J
0

(t) +
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X
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n

(t)T
n

(x) 8t 2 R,8x 2 [�1, 1]. (37)

Here, J
n

(t) is the Bessel function of the first kind of integer order, and T
n

(x) is the Chebyshev polynomial of the
first kind20,21. This identity in e↵ect decomposes the Fourier kernel e�ixt into Chebyshev polynomials with respect
to the argument x 2 [�1, 1] in the spirit of the method of separation of variables. In the context of our problem, the
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0
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0
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1
X

n=1

2(�i)nJ
n

(⌦(t� t
0

))T
n

(x) (38)

makes the integral in Eq. (35) ready to calculate, provided that the following modified moment
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dxT
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(x). (43)

It seems that ⌅
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(t) =
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�1 dxT
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(x)f�
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(x)⇤
↵

(x, t) in Eq. (40) can not be more easily evaluated otherwise than by
the same Eq. (38) based strategy,
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The time independent part of Eq. (44) is expected to be provided beforehand.
By the way, the analytical continuation, if exists, of f�

↵

(x) is not analytic in the whole complex plane, but f�
↵

(x)
itself is smooth enough in the interval [�1, 1], so ⌅

↵,k

(t
0

) will generally decay geometrically to zero, and faster for
higher temperature.
Similar manipulation can be applied to Eq. (34), which is just a verbatim repetition of the procedure leading to

Eq. (40). Heretofore, we have completed the discretization of HEOM(26),(33) and (34), which now reduce into the
following set of coupled ordinary di↵erential equations(ODEs).
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(t) = [h (t)� !̄ ��
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0
,k

0(t)'
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(t)� (2� �
k0

)'†
↵

0
,k
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(t)] 
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0
k

0
,↵k

(t) , (47)

where ⌅
↵,k

(t)’s and ⇧
↵,k

(t)’s are obtained from Eqs. (44)and(42), respectively.
Here, it is high time to stress the advantage of this new approach. From Ref. 44, we learn that

J
n

(t) ⇠ 1p
2⇡n

✓

te

2n

◆

n

as n!1, for a given t, (48)

which indicates that J
n

(t) decays spectrally45 for increasing n. Therefore, the series in Eqs. (45),(46),(42) and (44)
can be truncated after M terms, with M being around 1.5⌦(t � t

0

), if ⌦(t � t
0

) is large enough; thus there is no
need to worry about the convergence problem. In the meantime the ensuing truncation error can be made negligible,
if criterion of trunction is appropriately chosen and the initial condition is exactly evaluated, compared with the
numerical error of ODE solver. Consequently, the error mainly comes from the practical numerical integrator of
ODE, e.g. fourth-order Runge-Kutta algorithm.
Obviously, as the propagation time goes longer, more and more '

↵,k

(t)’s will contribute to the transient dynamics.
More specifically, in numerical implementation, it is the desired span of maximum propagation time multiplied by the
system-dependent constant ⌦ that determines the number of '

↵,k

(t)’s as well as  
↵

0
k

0
,↵k

(t)’s needed. Be cautious that
although at early stage only the first few '

↵,k

(t)’s are included in summation, it is indispensable to simultaneously
update the whole set of unknown matrices involved from the very start till the end.
Naturally, the resulting Eqs. (45),(46) and (47) can be parallelized, making its solution much more e�cient.
Moreover, in striking contrast to partial fraction expansion of the Fermi distribution function16,34 with the purpose

of approximating Fermi distribution function f�
↵

(x) on the whole real axis as good as possible, in the present approach,
whether the actural behavior of f�

↵

(x) outside the interval [�1, 1] can be reproduced is not of concern.
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1st-tier auxiliary  
density matrix 

2nd-tier auxiliary  
density matrix 

4

H
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=
X

µ

X

k2↵

t
↵kµ

d†
↵k

a
µ

+H.C., (16)

of which, a†
µ

(a
⌫

) creates(annihilates) an electron in the corresponding orthonormal basis |�
µ

i(|�
⌫

i) of the device part,
and d†

↵k

(d
↵k

) creates(annihilates) an electron in the eigenstate |k
↵

i of the electrode ↵. And accordingly, h
µ⌫

=

hµ|ĥ(r, t)|⌫i , ✏
↵k

= hk
↵

|ĥ(r, t)|k
↵

i, and t
↵kµ

= hk
↵

|ĥ(r, t)|µi.
It is more convenient to work in the reservoir H

B

-interaction picture12, where H
B

=
P

↵

H
↵

. Note that

{a†
µ

, d
↵k

} = 0 = {a
µ

, d†
↵k

}, hence,
⇥

a†
µ

,H
B

⇤

= 0 = [a
µ

,H
B

] , which follows that a†
µ

’s and a
µ

’s stay the same un-
der the transformation between the Schrödinger picture and the H

B

-interaction picture. After transformation into
this interaction picture, the Hamiltonian H

T
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H̃
T
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C

+
X

↵
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(t) , (17)
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To facilitate later derivation, some items are clarified from the beginning. As is known, any physical Hamiltonian
should be bounded from below, so is H

↵

. Besides, H
↵

is also bounded from above. Thereby, in this work, the whole
discussion is restricted to the case where the spectral ✏
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in which �
↵

(t) is the rigid uniform shift for all single-electron levels in electrode ↵ under the time-dependent voltage
on this electrode33. Thus,
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Here, the same trick as the multiple-frequency-dispersed scheme in Ref. 12 is utilized. It is advantageous to work with
the canonical interval [�1, 1]. Here, having introduced two constants
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we have

b̃†
↵µ

(t) = ⌦

Z

1

�1
dx ei⌦x(t�t0)b̃†

↵µ

(x, t), b̃
↵µ

(t) = ⌦

Z

1

�1
dx e�i⌦x(t�t0)b̃

↵µ

(x, t), (22)
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 First-principles Liouville-von Neumann equation 

Poisson Equation  with boundary condition via potentials at SL and SR  

Zheng, Wang, Yam, Mo & Chen, PRB 75, 195127 (2007) 

i σ D = hD t;ρD (r,t)!" #$,σ D
!
"

#
$− i Qα t;ρD (r,t)!" #$

α=L,R
∑

Left electrode right electrode 

system to solve 

boundary condition 

,L LS µ ,R RS µ



σ(r,r’;t)=σ(R,Δ;t)à Wigner function: f(R, k; t) 
        Fourier Transformation   with R = (r+r’)/2;  Δ = r-r’ 
 

Our Theory: First-principles quantum kinetic equation 
  for transport 

Quantum Transport through Mesoscopic Devices 
 

Quantum kinetic equation: 
 

Quantum version of Boltzmann Transport Eq. 
 for Wigner function: f(R, k; t) 

Simple Boundary Condition & Easy to Implement 
CECAM 2015 



CECAM 2015 

(if steady state current exists) 



Thomas Frauenheim Thomas Niehaus 

TDLDA-NEGF 
CECAM 2015 



Wide-Band-Limit Approximation 

Zheng et. al. JCP 133, 114101 (2010)  



Comparison between different schemes for spectrum expansion 
(25 atoms) 

passage time = l / vf 

Current 	


Time (fs)	


WBL 
Scheme One   
Scheme Two 

Bias Voltage:  Step function, Amplitude 0.01 V 
Temperature: 300 K 
Hoping value: 2.0 eV 
	


…	
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2.0 
ev	


2.0 
ev	


2.0 
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2.0 
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2.0 
ev	
…	


2.0 
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Single site model	
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CECAM 2015 

Σtotal = Σelectrode	

 + Σphonon + Σphoton + Σelectron-electron	



Environment has infinite numbers of states, Σ = Re (Σ) + i Im(Σ)  



ΣL ΣRSource Drain Device 

eH

er erH →Σ

Yu Zhang CECAM 2015 



Auguries of Innocence 

William Blake  
 

To see a world in a grain of sand,  
And a heaven in a wild flower,  

Hold infinity in the palm of your hand,  
And eternity in an hour...  

 

William Blake (1757–1827) 
English poet, painter 

“⽆无量⽆无边诸国⼟土，悉令共⼊入⼀一尘中”, 
《华严经�Avatamsakasütra》 

一沙一世界，一叶一菩提， 
一花一天堂，一笑一尘缘。 



Color:           Current Strength 
Yellow arrow: Local  Current direction 

Transient Current Density Distribution through Al-CNT-Al Structure  

Carbon Nanotube 

Al Crystal 

Time dependent Density Func. Theory 

Al Crystal 

System: (5,5) Carbon Nanotube 
              Al (001)-electrodes 

    60 Carbon atoms 
    48x2 Aluminum atoms 
    Total: 1608 electrons 

Wide band limit / LDA 
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Transient current (red lines) & applied 
bias voltage (green lines) for the Al-
CNT-Al system. (a) Bias voltage is 
turned on exponentially, Vb = V0 (1-e-

t/a) with V0 = 0.1 mV & a = 1 fs. Blue 
line in (a) is a fit to transient current, 
I0(1-e-t/τ) with τ = 2.8 fs & I0 =13.9 nA. 
(b) Bias voltage is sinusoidal with a 
period of T = 5 fs. The red line is for 
the current from the right electrode & 
squares are the current from the left 
electrode at different times.  

Vb = V0 (1-e-t/a) 
V0 = 0.1 mV & a = 1 fs 
 
Switch-on time: ~ 10 fs 



(a) Electrostatic potential 
energy distribution along 
the central axis at t = 0.02, 
1 and 12 fs. (b) Charge 
distribution along Al-CNT-
Al at t = 4 fs. (c) Schematic 
diagram showing induced 
charge accumulation at two 
interfaces which forms an 
effective capacitor.  



Direct simulation of organic optoelectronic device 
Xu, GHC & etc. (2019) 
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Induced	
  Mulliken	
  charge	
  distributed	
  onto	
  real	
  space 
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Fermi velocity 

Chen, Zhang, Koo, Tian, Yam, GHC & Ratner, JPCL (2014)  
ShuGuang CHEN 



Buttiker Probe 

CECAM 2015 

Net current = zero 

Dephasing 



BP 7: Decoherence Free ! 

Chen, Zhang, Koo, Tian, Yam, GHC & Ratner, JPCL (2014)  
Chen, Zhang, Koo, Tian, Yam, GHC & Ratner, JPCL(2014)  



Disubstituted Benzenes  
C

oherence 

Chen, Zhang, Koo, Tian, Yam, GHC & Ratner, JPCL (2014)  



Can it survive the influences of phonon?  

Chen, Zhou, GHC & Ratner, JPCL 2017  



Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013) 

Courtesy of I. Franco 



L. Chen, Y. Zhang, GHC & I. Franco, Nat. Comm. (2018)  



L. Chen, Y. Zhang, GHC & I. Franco, Nat. Comm. (2018)  

Stark control of electrons along nanojunction 



Water dissociation	


- Mulliken Charge	


Time-Dependent Current	


… …
0.55nm	
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Figure 3.16: The changes of net charges on the hydrogen atoms when a hydrogen atom
is dissociated.

t = 120fs, making the net charge on H1 turning from positive to negative rapidly. As

the net charge of H1 atom turns from positive to negative, the repulsion between this

hydrogen atom and the oxygen atom increases due to the Coulomb repulsion. The

dissociation of H1 atom takes place as the number of electrons increases in the atom

H1 as shown in Fig. 3.15.

To see how these changes in net charge takes place, the local denisty of states

(LDOS) of the two hydrogen atoms with the structures at three di↵erent times t=0fs,

t=60fs and t=120fs are plotted, as shown in Fig. 3.17 . Because the water molecule

interacts with the metal atoms in the extended molecular device, the orbitals of the

water molecule are mixed with the orbitals of the metal atoms. But the LDOS can

well represent the contributions of each atom to the molecular orbitals of the whole

device. In these figures, the energy has been shifted to make the Fermi-level locating

at the zero point. It can be seen that the LDOS of the two hydrogen atoms in the

63

Chen, Kwok & GHC, Acc. Chem. Res. (2018)  



Left panel: pump-probe STM images with various pulse delays As indicated. Color reflects the magnitude of 
integrated current on a log scale (projected on real space). Right panel: electron density images (obtained by 
projecting occupation of LUMOs on real space) at the same times. Color reflects the magnitude of electron 
density on a log scale.  

Imaging of electron dynamics in 
real space and time (fs & atomic resolution) 

Kwok, GHC, Mukamel, submitted 



Transparent Boundary: 
A drop of an electron onto graphene 

CECAM 2015 



CECAM 2015 

Open  



Tight-Binding Model 

XIE Hang TIAN Heng 
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Fig. 2. Schematic diagram of the quantum dots array. The quantum dots are labeled as 

“Dot” , “P” represents the gate probes used to control the interdots coupling. D, L and 

R are Device region, left and right side electrode respectively. QDs of the device 

region are indexed from 1 to N. 
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Fig. 3 (a), (b), (c). Calculated transient currents through left electrode of different 

sites of quantum dots array. (a) results obtained from both rigorous non-WBL HEOM 

method and its WBL version for homogeneous10 sites and 100 sites TB models; (b) 

rescaled results obtained from WBL HEOM method for 10, 500, 1000 sites models;  

 

According to Landaur-Büttiker formula, the quantum conductance of a single 

conducting channel is 
2

/e h . In our case when bias voltage 0.01ε∆ = Vµ  is 

applied, it should result in a steady state current of 387 fA . This is exactly what we 

obtained from both of our calculations, which again validates the accuracy of our 

methods. As shown in Fig. 3(a), the two schemes yield almost the same 
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Currents at different temperatures 

Scheme Two: 
non-Markovian  
zero & finite T       	
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Coupling matrix element: 2 µeV 

and R are Device region, left and right side electrode, respectively. QDs of the device 
region are indexed from 1 to N. 
 

 
 

 
 



Rescaled 100, 500 and 1000 Quantum Dots  

and R are Device region, left and right side electrode, respectively. QDs of the device 
region are indexed from 1 to N. 
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time-dependent currents, which confirms again the accuracy and validity of Scheme 
One and Two.  
 
To our surprise, the transient current grows linearly with respect to time before 
reaching their steady states for both 10 and 100 QDs. This is quite different from the 
situation of one site model (as shown in Fig. 1) where the current fluctuates before 
reaching its steady value. Longer the array is, more the “switch-on” time is. In Fig. 3b, 
we rescale the simulation time for the array of 500 and 1000 QDs by dividing the 
corresponding value 5 and 10 times, respectively, and find that the rescaled results fall 
onto the same linear lin. This confirms that the “switch-on” time is exactly 
proportional to the length of the QD array. 
 
To investigate how general this linearity phenomenon is, interface scattering is 
introduced by decreasing the coupling matrix element between device and electrodes 
from 2.0 eVµ  to 1.6 eVµ . From the results it is found that the linear relationship 
between current and time survives except that the steady state current is reduced, as 
shown in Fig. 3(c).  
 
For one-dimensional tight-binding model above, the dispersion relation is as follow: 

( ) 2 cos( )E k kaγ= − , 

where k  is the wave number ( )E k , 2 eVγ µ= , and a  is the distance between 
every two quantum dots. Then Fermi velocity fV  can be easily obtained from the 
dispersion relationship: 

1 ( ) 2 sin( )
F

f f
k k

E k aV k a
k

γ

=

∂
= =

∂ℏ ℏ
 

As the QDs are half-filled, fk can be determined as follows, 

0 2 cos( )fE k aγ= = −  

Thus we have 

2
f

aV γ
=
ℏ

 

Assume there are N QDs in the array; the dwell time dτ , i.e. the time that an 

conducting electron needs to travel through the system, can be expressed as 

 
2d

f

Na N
V

τ
γ

= =
ℏ  (12) 
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Take 100 sites system for example, 16.5d nsτ = , which is the same with the “switch 
on” time in Figure 3a. With the sites number being reduced, more fluctuations appear 
before current reaching its steady value, which makes it difficult to define the exact 
“switch-on” time for short arrays.  
 
To further investigate the linear relationship between current and time, concept of 
equivalent electric circuit is borrowed [19]. In our previous work, we found that the 
linear electric response of any coherent two-terminal molecular devices could be 
mapped onto a classical circuit containing two parallel branches. However for 
homogeneous tight binding model the equivalent circuit shrinks into a simpler R-C 
circuit due to the free of interface charge accumulation. According to our previous 
derivations for two sites model, resistance LR  should be equal to the quantum 
resistance 2/h e , and the inductance can be expressed as 2 22 /L eπ γ= ℏ . 
 
Now let’s consider the TB model in aspect of energy. First it’s necessary to point out 
that in equivalent circuit the resistor only serves to reproduce dynamics of the 
transient current. However it does not lead to any kind of energy dissipation in our 
fully coherent transport model. Hence before current is completely switched on, 
energy provided by the voltage source will be restored totally in the equivalent 
inductor, which can be expressed as 

21
2

E LI=  

The power P I ε= ∆ injected into the system will be completely absorbed by the 
equivalent inductor. Due to energy conservation, we have 

( )d dP IV E LI I t
dt dt

= = =
 

where V is the applied voltage. 
 
Then we get the time derivative of the transient current 

 ( )d VI t
dt L

=  (13) 

 
When step-shaped bias voltage is applied, the RHS of equation (13) becomes a 
constant. Therefore the time derivative of transient current is also a constant, which 
successfully explains the linear relationship between current and time. Then the 
steady state current in linear response region can be expressed as 
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constant. Therefore the time derivative of transient current is also a constant, which 
successfully explains the linear relationship between current and time. Then the 
steady state current in linear response region can be expressed as 
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According to equation (13), we may expect the “switch-on” time to be 
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steady

switch

I e V h e L
dI dt V L h
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According to Refs. [19] and [20], 
2

2

NL
e
π
γ

=
ℏ . Then we have 

2switch
Nτ
γ

=
ℏ

 

This is exactly the “dwell time” dτ  [see equation (12)]. Such result totally agrees 
with the picture in which the current is travelling in the form of electronic wave 
packages proceeding with Fermi velocity. Note that the energy analysis presented 
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