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Preface

Convection-diffusion problems attract much attention in the research liter-
ature. For numerical analysts working in this area, a standard reference is
the text by Roos, Stynes, and Tobiska [RST96,RST08]. This book con-
tains a lot of useful information, but it is daunting for those beginners who
have some familiarity with numerical methods and their analysis but who
have not previously worked with convection-diffusion and other singularly
perturbed differential equations. For many years I felt that an easier, more
introductory book was needed to encourage new people to enter our fas-
cinating research area. This belief was encouraged by the popularity of a
survey article, “Steady-state convection-diffusion problems”, that I wrote
for Acta Numerica in 2005 [Sty05]. The present book is an extended and
updated version of that 2005 article, and I have added exercises and other
material to try to make it more attractive and more useful for the novice
reader.

The feeling that a book of this type was desirable did not lead me to
take any action until I was invited to present a course on this topic at the
AARMS (Atlantic Association for Research in the Mathematical Sciences)
Summer School at Dalhousie University in Halifax, Nova Scotia, Canada,
during July 2015. The organisers encourage their lecturers to transform
their lecture notes into books, and after much delay I have done this. I am
very grateful to AARMS for their invitation to lecture and for the enjoyable
month I spent in the delightful city of Halifax.

Here we list the prerequisites for the reader. In Chapters 1–3 some
knowledge of two-point boundary value problems and their numerical solu-
tion by finite difference methods is enough for almost all of the material.

vii
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viii Preface

For Chapter 4 it is desirable to have some previous experience of partial dif-
ferential equations. Chapter 5 uses only ideas from earlier chapters. Finite
element methods (FEMs) appear for the first time in the long Chapter 6, and
here I assume that the reader already has a general understanding of how
FEMs are constructed and analysed. The Lebesgue spaces Lp(Ω) and the
standard Sobolev spaces Hk(Ω) are used occasionally in the earlier chapters
of the book and more heavily in Chapter 6; the reader should have some
familiarity with these well-known concepts.

The book was written where I work, in the research paradise known
as Beijing Computational Science Research Center. I owe a great debt to
CSRC’s director Hai-Qing Lin for the positive environment he has created at
CSRC through his friendly yet no-nonsense approach to productive research.
My work was supported by the 1000 Talents (Foreign Experts) Program of
the People’s Republic of China.

All comments on this book are welcome. No doubt it will (inevitably)
contain some mistakes, so corrections are also welcome, though the fewer
the better! My email address is m.stynes@csrc.ac.cn

Martin Stynes

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



Chapter 1

Introduction and
Preliminary Material

1.1. A simple example

Example 1.1. Consider the two-point boundary value problem

−εu′′(x) + 2u′(x) = 3 for 0 < x < 1,(1.1a)

u(0) = u(1) = 0,(1.1b)

where ε is a small positive parameter. (This means that ε is a constant, but
we are interested in what happens for different values of this constant.) The
solution of (1.1) is

(1.2) u(x) =
3

2

[
x− e−2(1−x)/ε − e−2/ε

1− e−2/ε

]
for 0 ≤ x ≤ 1.

A graph of this solution for three different values of ε is displayed in Fig-
ure 1.1.

When x is not near 1, the graph is unremarkable: it appears to be the
straight line y = 3x/2. But near x = 1 the solution u(x) changes rapidly,
and this behaviour becomes more extreme as ε gets smaller. We say that
u(x) has a boundary layer at x = 1 when ε is small; this is a narrow region
where u is bounded independently of ε but where its derivatives are large.
In fact all derivatives at x = 1 are unbounded as ε → 0. These statements
can be verified using (1.2): as 0 ≤ [e−2(1−x)/ε − e−2/ε]/[1 − e−2/ε] ≤ 1, we
have

|u(x)| ≤ 3

2
(1 + 1) = 3 for all x ∈ [0, 1],

1
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2 1. Introduction and Preliminary Material
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Figure 1.1. Graph of (1.2) with ε = 0.1, 0.05, 0.01

but

u′(x) =
3

2

[
1− 2e−2(1−x)/ε

ε(1− e−2/ε)

]
≈ 3

2
− 3

ε
for x near 1,

u′′(x) = − 6e−2(1−x)/ε

ε2(1− e−1/ε)
≈ − 6

ε2
for x near 1,

etc.

Exercise 1.2. Suppose that in Example 1.1 the boundary condition at x = 1
is changed to u(1) = k for some k ∈ R. Will the solution of the example
still have a boundary layer at x = 1? Show that there is a single exceptional
value of k for which the behaviour of the solution is somewhat different.

Exercise 1.3. Consider the boundary value problem

−εv′′(x) + v(x) = 2 for 0 < x < 1,

v(0) = v(1) = 0.

Here, as usual, ε is a small positive parameter. Find a formula for the exact
solution v(x). Does v have a boundary layer when ε is small? Where?

This problem has some similarity to Example 1.1, but there are also
some significant differences that will be discussed in Remark 2.37.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.
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Figure 1.2. Example 1.1 with ε = 0.01; solution computed by central
differencing with N = 16

The boundary value problems in this book are, like (1.1), second-order
differential equations whose highest-order derivative is multiplied by a small
positive parameter. Their solutions, like (1.2), are usually well-behaved on
most of the domain but change rapidly near some boundary, and derivatives
of the solution are large in these boundary layers.

If (1.1a) has variable coefficients or is a partial differential equation, often
we are unable to write down an explicit simple formula like (1.2) for u(x).
Thus we need to devise analytical tools for analysing problems like (1.1) to
answer questions such as:

(i) Is there a boundary layer?

(ii) At which part of the boundary is it located?

(iii) What is its analytical structure? For example, inside this layer,
does u′(x) behave like 1/ε or 1/

√
ε or · · · ?

The results of these theoretical investigations will help us devise numer-
ical methods suitable for solving (1.1) and its generalizations, as standard
numerical methods often behave poorly when boundary layers are present.
To illustrate this failing, in Figure 1.2 we reproduce Figure 3.1, which dis-
plays the oscillatory and inaccurate numerical solution obtained when a
routine finite difference method is used to solve Example 1.1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



4 1. Introduction and Preliminary Material

1.1.1. What are convection-diffusion problems? Our interest is in
elliptic operators (this term is defined in a moment) whose second-order
derivatives are multiplied by some parameter ε that is allowed to be close to
zero. These derivatives model diffusion, while first-order derivatives (which
in this book are usually assumed to be present) are associated with convec-
tive or transport processes. In classical boundary value problems where ε is
not close to zero, diffusion is the dominant mechanism in the model, and the
first-order convective derivatives play a relatively minor role in the analysis.
On the other hand, when ε is near zero and the elliptic differential opera-
tor has convective terms, it is called a convection-diffusion operator because
now the convection term also has a strong influence on the solution of the
boundary value problem. Such operators, while still satisfying the definition
of ellipticity, live dangerously by flirting with the nonelliptic world. Their
convective terms play a significant part in the theoretical and numerical
analysis of the boundary value problem and cannot be summarily dismissed
as “lower-order terms”.

We shall see that the solutions of convection-diffusion problems have
a convective nature on most of the domain of the problem, and the dif-
fusive part of the differential operator is influential only in certain narrow
subdomains. In these subdomains the gradient of the solution is large: its
magnitude is proportional to some negative power of the parameter ε. We
describe such behaviour by saying that the solution has a layer.

Definition 1.4. Suppose v = v(x, ε) for (x, ε) ∈ [0, 1]× (0, 1]. Assume that
v′(x, ε) := ∂v(x, ε)/∂x exists for all (x, ε) ∈ [0, 1]× (0, 1]. We say that v has
a layer at a point z ∈ [0, 1] as ε → 0+ if the following two conditions are
satisfied:

(i) limε→0+ v′(z, ε) is ∞ or −∞;

(ii) limε→0+ v′(x, ε) exists and is finite at each point x ∈ [0, 1] satisfying
0 < |x − z| < k for some positive constant k, where k can depend
on z but not on ε.

Remark 1.5 (Alternative definitions of a layer). Definition 1.4 is, more
precisely, a layer in v′ as this is the lowest-order derivative that becomes very
large as ε → 0. In some situations a layer may appear only in a higher-order
derivative: for instance, the Neumann boundary condition in Remark 2.33
and Exercise 2.34 induces a layer in the second -order derivative; see also
Exercise 2.3. Such layers are less dangerous (when computing numerical
solutions) than layers in first-order derivatives, but they are not entirely
trouble-free. Throughout this book we shall focus our attention on the first-
order derivative layers of Definition 1.4 since these are the most difficult to
handle numerically.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



1.1. A simple example 5

Remark 1.6 (Structure of solutions of convection-diffusion problems). Ex-
ample 1.1 is a typical example of a convection-diffusion problem. On most
of the domain the solution u(x) is essentially 3x/2, which is the solution of
the convective first-order initial value problem 2v′(x) = 3, v(0) = 0. But
near x = 1, the rapidly decaying layer function exp(−2(1 − x)/ε) kicks in
(the terms exp(−2/ε) in (1.2) are extremely small and can be ignored). This
function is a solution of the second-order equation −εw′′ + 2w′ = 0. The
solution u(x) has a layer at x = 1 in the sense of Definition 1.4.

Solutions of convection-diffusion problems throughout the book have a
similar structure: on most of the domain, one sees the solution of a first-
order differential equation that is obtained by setting ε = 0 in the differential
equation, but near certain parts of the boundary this first-order solution
is augmented by a layer function that is a multiple of a solution of the
homogeneous second-order differential equation obtained by setting to zero
the right-hand side of the original differential equation. (Note. In solutions,
interior layers can occur also—that is, in Definition 1.4 one could have
z ∈ (0, 1). We shall encounter this phenomenon in Remark 2.42.)

The fact that the elliptic nature of the differential operator is disguised
on most of the domain means that numerical methods designed for elliptic
problems will not work satisfactorily. In practice they usually exhibit a
certain degree of instability. The challenge then is to modify these methods
into a stable form without compromising their accuracy.

Definition 1.7. A second-order differential operator in n variables x1, . . . ,
xn whose highest-order derivatives are

−
n∑

i,j=1

pij
∂2(·)
∂xi∂xj

,

where the pij are functions of x := (x1, . . . , xn), is said to be elliptic on a
domain (open connected set) D ⊂ Rn if

(1.3)
n∑

i,j=1

pij(x)ξiξj ≥ σ
n∑

i=1

ξ2i for all x ∈ D and all ξi and ξj ∈ R,

for some positive constant σ, which is called the ellipticity constant. (In the
one-dimensional case, this definition says merely that the coefficient of u′′ is
negative and bounded away from zero on the domain of the problem.)

The differential operators in convection-diffusion problems stretch this
definition as far as they dare: their ellipticity constant (for example, ε in
Example 1.1) is close to zero.

It is often assumed (certainly in introductory textbooks in both theo-
retical differential equations and numerical analysis) that σ is not close to

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



6 1. Introduction and Preliminary Material

zero; for example the Laplacian −Δu has σ = 1. This assumption avoids
many difficulties. Consider, say, the proof of convergence of a finite dif-
ference method for the problem −σu′′(x) + u′(x) = f(x) on (0, 1) with
u(0) = u(1) = 0: if you allow the positive constant σ to take a value near
zero, does the argument still work? In fact, on a more fundamental level,
what happens to the solution u of this boundary value problem when σ be-
comes small? Taking into account this alteration in the behaviour of u, how
can we modify the numerical method so that it remains stable and accurate?
It is questions such as these that will preoccupy us throughout this book.

Our task now is to make concrete these suspicions and assertions. We
shall begin in sections 1.4 and 1.5 by developing some fundamental ideas
about maximum principles and asymptotic expansions. In Chapter 2 we use
these tools to begin an examination of the asymptotic nature of solutions
to convection-diffusion problems. Furthermore, to carry out any numerical
analysis, one needs a priori to have some bounds on the derivatives of the
solutions of these problems; such estimates, and useful decompositions of
the solutions, are also given in this chapter. Finite difference methods and
the accuracy of their solutions are examined in Chapter 3. This leads natu-
rally to the question of constructing suitable meshes for convection-diffusion
problems, and section 3.4 is devoted to an epitome of this class: Shishkin
meshes. We present in Chapter 3 a full analysis of a finite difference method
on a Shishkin mesh.

The discussion up to this point has dealt only with ordinary differential
equations, where the theory is fairly complete. Now we move into deeper wa-
ters: in Chapter 4 we discuss the nature of solutions to convection-diffusion
problems posed in two-dimensional domains. A priori estimates for such
problems are presented in section 4.2, then some preliminary comments on
numerical methods are given in section 4.3. Finite difference methods for
such problems are considered in Chapter 5, but our main emphasis is on
Chapter 6, which is devoted to finite element methods where we shall dis-
cuss the standard Galerkin method and various stabilized finite element
methods for convection-diffusion problems.

For reasons of length it is impossible to give here a complete account of
the many numerical methods used to solve steady-state convection-diffusion
problems. The books by Linß [Lin10] and Roos, Stynes, and Tobiska
[RST08] give a comprehensive discussion of numerical methods in this ac-
tive area, and Roos [Roo12] describes some more recent developments.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



1.3. Notation 7

1.2. A little motivation and history

Perhaps the most common source of convection-diffusion problems is as lin-
earizations of Navier–Stokes equations with large Reynolds number. Mor-
ton [Mor96] points out that this is by no means the only place where they
arise: his opening chapter lists ten examples involving convection-diffusion
equations that include the drift-diffusion equations of semiconductor device
modelling and the Black–Scholes equation from financial modelling. He also
observes that “Accurate modelling of the interaction between convective
and diffusive processes is the most ubiquitous and challenging task in the
numerical approximation of partial differential equations”.

The numerical solution of convection-diffusion problems goes back to the
1950s [AS55], but only in the 1970s did it acquire a research momentum
that has continued to this day. A potted history of the development of
numerical methods for convection-diffusion problems up to 2003 is presented
in [Sty03b]. The field is still very active but much remains to be done.

1.3. Notation

Throughout this book, the parameter ε lies in (0, 1], and we are usually
interested in what happens when ε is close to zero. We shall use C to denote
a generic constant that is independent of ε and of any mesh used—it can take
different values in different places (even sometimes in the same calculation).
A subscripted C (e.g., C1) is also a constant that is independent of ε and of
any mesh used, but it takes one fixed value.

Let g be defined on a domain D ⊂ Rn for some n ∈ {1, 2, . . . }. In the
rest of this paragraph we assume that each norm of g is well-defined and
finite. We define the L∞ norm of g by

‖g‖∞ = max
x∈D̄

|g(x)|,

where D̄ denotes the closure of D. For k = 0, 1, 2, . . . define the Sobolev
seminorms and norms

|g|k =

⎡
⎣∫

x∈D

∑
α1+α2+···+αn=k

(
∂kg(x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

)2

dx

⎤
⎦1/2

and

‖g‖k =

⎛
⎝ ∑

0≤j≤k

|g|2j

⎞
⎠1/2

.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



8 1. Introduction and Preliminary Material

Thus in particular ‖·‖0 ≡ ‖·‖L2 . Often we do not write down the domain D
over which the norm is computed since typically this is obvious from the
context in which the norm is used.

For any set S ⊂ Rn, let ∂S denote the boundary of S. Let Ck(S) denote
the space of functions that are defined on S and whose derivatives up to
order k ∈ {1, 2, . . . } are continuous on S. Furthermore, C(S) is the space of
functions that are continuous on S.

1.4. Maximum principle and barrier functions

Consider the second-order differential operator L in n variables defined on
some bounded domain (open connected set) D ⊂ Rn by

Lu(x) = −
n∑

i,j=1

pij
∂2u(x)

∂xi∂xj
+

n∑
i=1

qi(x)
∂u(x)

∂xi
+ r(x)u(x), x ∈ D,

where the pij are constants. Throughout section 1.4 we assume that L is
elliptic in the sense of Definition 1.7.

Lemma 1.8 (Maximum Principle). Let u ∈ C(D̄) ∩ C2(D) satisfy the dif-
ferential inequality Lu ≥ 0 on D. Suppose also that u ≥ 0 on ∂D. Suppose
that the functions qi and r are bounded on D and that r ≥ 0 is bounded on
D. Then u ≥ 0 on D̄.

This well-known result is proved, for instance, in Protter and Weinberger
[PW84, Chapter 2, Section 3]. It is a very useful tool when analysing the
behaviour of solutions to convection-diffusion problems.

Remark 1.9. In the particular case where D = (a, b) ⊂ R and Lu = −u′′,
the hypothesis Lu ≥ 0 on D means that the graph of u is concave down on
[a, b]. Combining this property with u(a) ≥ 0, u(b) ≥ 0, it is clear from a
diagram (see Figure 1.3) that u ≥ 0 on [a, b].

Exercise 1.10. For the case n = 1 and D = (a, b), let u ∈ C[a, b]∩C2(a, b)
with u(a) ≥ 0, u(b) ≥ 0. Prove Lemma 1.8 under each of the following
slightly stronger hypotheses:

(1) Lu ≥ 0 and r > 0 on D;

(2) Lu > 0 and r ≥ 0 on D.

Hint. Assume that the conclusion of the lemma is false and derive a contra-
diction, using some basic calculus and the fact that a continuous function
on a closed interval attains its minimum at some point in the interval.

The proof of Lemma 1.8 for the most general case Lu ≥ 0 and r ≥ 0 is
more difficult; see [PW84].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



1.4. Maximum principle and barrier functions 9
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Figure 1.3. −u′′ ≥ 0 on (0, 1), u(0) ≥ 0, u(1) ≥ 0 =⇒ u ≥ 0 on [0, 1]

Exercise 1.11. For the case n = 1 and D = (a, b), suppose that u ∈ C2[a, b]
and that the hypothesis u(b) ≥ 0 of Lemma 1.8 is replaced by the hypothesis
u′(b) ≥ 0. Assume that Lu ≥ 0 and r ≥ 0 on D, where at least one of these
inequalities is strict (in fact Lu ≥ 0 and r ≥ 0 is sufficient, but then the
proof is more complicated). Prove that the conclusion of the lemma is still
valid by imitating the proof of Exercise 1.10.

Can you see what hypothesis on u′(a) could replace the hypothesis
u(a) ≥ 0, while preserving the validity of the lemma? (It isn’t “u′(a) ≥ 0 ”!)

A maximum principle can be used to bound the absolute value of the
unknown solution of a differential equation:

Corollary 1.12 (Comparison principle). Suppose that the functions qi and r
are bounded on D and that r(x) ≥ 0 is bounded on D. Let u, v ∈ C(D̄) ∩
C2(D). Suppose that |Lu(x)| ≤ Lv(x) for all x ∈ D and |u(x)| ≤ v(x) for
all x ∈ ∂D. Then |u(x)| ≤ v(x) for all x ∈ D̄.

Proof. One cannot immediately apply Lemma 1.8 to the functions |u| and v
because |u| may not be differentiable. Instead we apply this lemma to the
functions v − u and v + u and deduce that v − u ≥ 0 and v + u ≥ 0 on D̄.
But for each x ∈ D̄, one has v(x)− |u(x)| = (v − u)(x) or (v + u)(x), so we
are done. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



10 1. Introduction and Preliminary Material

A function such as v in Corollary 1.12 is called a barrier function for u.
This corollary is often applied to a function u that is a solution of a boundary
value problem—so u|∂D and Lu are known, but u|D\∂D is unknown. We
then try to choose a suitable function v that satisfies the hypotheses of
the corollary in order to deduce some worthwhile information about the
behaviour of u inside D.

Exercise 1.13. In each of the following boundary value problems, assume
that f ∈ C[0, 1], with u(0) = u(1) = 0. Consequently, u ∈ C2(0, 1)∩C[0, 1].
Construct an appropriate barrier function, and use a maximum principle to
deduce the desired bound on ‖u‖∞.

(i) If − u′′ = f on (0, 1), show that ‖u‖∞ ≤ 1

8
‖f‖∞.

(ii) If − εu′′ + 2u′ = f on (0, 1), show that ‖u‖∞ ≤ 1

2
‖f‖∞.

(iii) If − εu′′ + 3u = f on (0, 1), show that ‖u‖∞ ≤ 1

3
‖f‖∞.

1.5. Asymptotic expansions

Putting barrier functions aside for the moment, we turn our attention to a
useful descriptive tool: asymptotic expansions.

Let ε > 0 be a small parameter. If f = f(x, ε) and g = g(x, ε) with x
lying in some domain D, we write f(x, ε) = O (g(x, ε)) as ε → 0 if there
exists a positive number A that is independent of ε and an ε0 > 0 such that
|f(x, ε)| ≤ A|g(x, ε)| for 0 < ε ≤ ε0. If in addition A and ε0 are independent
of x, we say that f(x, ε) = O (g(x, ε)) as ε → 0 uniformly for x ∈ D.

This notation is useful for comparing functions of similar size. For func-
tions of greatly differing relative size, one uses a “small o” notation: we write
f(x, ε) = o(g(x, ε)) as ε → 0 if, given any δ > 0, there exists an ε0 > 0 such
that |f(x, ε)| ≤ δ|g(x, ε)| for 0 < ε ≤ ε0. If in addition ε0 is independent
of x, we say that f(x, ε) = o(g(x, ε)) as ε → 0 uniformly for x ∈ D.

These concepts can be expressed as follows:

f(x, ε) = O (g(x, ε)) means that as ε → 0, |f(x, ε)|/|g(x, ε)| is bounded,

while

f(x, ε) = o(g(x, ε)) means that lim
ε→0

|f(x, ε)/g(x, ε)| = 0.

An asymptotic sequence {φn(ε)}, for n = 1, 2, . . . , is a sequence of func-
tions of ε such that

φn+1(ε) = o(φn(ε)) as ε → 0, for each n.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



1.5. Asymptotic expansions 11

Examples of asymptotic sequences:

(i) 1, ε, ε2, ε3, . . . ,

(ii) ε1/3, ε2/3, ε, ε4/3, . . . ,

(iii) ε| ln ε|, (ε| ln ε|)2, (ε| ln ε|)3, . . . .

Asymptotic sequences are the building blocks from which one constructs
asymptotic expansions.

Let u(x, ε) be defined for all x in some domain D and all sufficiently
small ε. Let {φn(ε)}, for n = 1, 2, . . . , be an asymptotic sequence. Then

the series
∑N

n=1 un(x)φn(ε), where N may be finite or infinite, is said to
be the asymptotic expansion of u with respect to {φn} as ε → 0, if for
each M ∈ {1, . . . , N} we have

(1.4) u(x, ε)−
M∑
n=1

un(x)φn(ε) = o(φM ) as ε → 0.

In this case we write u(x, ε) ∼
∑N

n=1 un(x)φn(ε). This asymptotic expansion
is uniform in D if (1.4) holds true uniformly for x ∈ D.

There are many books on asymptotic expansions. Two good but moder-
ately advanced ones are [KC96,KC81]. Some simpler examples of convec-
tion-diffusion problems are discussed in [Kev00, Section 8.3].

Note that an asymptotic expansion often consists of a finite number
of terms from a divergent infinite series. Thus in general it is not true
that taking more terms in an asymptotic expansion yields a more accu-
rate approximation of u; instead one usually takes a small number of terms
(maybe only one!) in an asymptotic expansion. The question of how many
terms one should take is examined in several examples in the informative
paper [Boy99], where much practical advice is given.

To introduce our final asymptotic concept, we take a simple example
involving functions of ε that have no additional dependence on a variable x.

Example 1.14. One can easily show that one solution uε of the algebraic
equation u2ε + εuε − 1 = 0, where ε is a small positive parameter, satisfies

uε = 1+O (ε). Thus as ε → 0 this solution approaches the solution u
(1)
0 = 1

of the problem u20 − 1 = 0. Similarly, the other solution of u2ε + εuε − 1 = 0

approaches the other solution u
(2)
0 = −1 of u20 − 1 = 0. Thus as ε → 0,

the solutions of the original problem approach the solutions of the modified
problem obtained by setting ε = 0.

The situation is different for the solutions v
(1)
ε and v

(2)
ε of the equation

εv2ε + vε − 1 = 0. An application of the quadratic formula and binomial
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12 1. Introduction and Preliminary Material

theorem shows that

v(1)ε = 1− ε+ 2ε2 − 5ε3 + · · · , v(2)ε = −ε−1 − 1 + ε− 2ε2 + · · · .

Hence as ε → 0, one has v
(1)
ε → 1 (the solution of the modified problem

v0 − 1 = 0 obtained by setting ε = 0), but v
(2)
ε → −∞.

The first part of Example 1.14 is a regular perturbation problem: the
behaviour of the solution when the perturbation parameter ε reaches its
limit value of 0 is quite similar to the behaviour when ε is near but not
equal to 0. For a regular perturbation problem, the following diagram is
commutative.

(1.5)

Problem with ε > 0 Problem with ε = 0

Solution when ε > 0 Solution when ε = 0

set ε=0

Solve Solve

set ε=0

The second part of Example 1.14 is a singular perturbation problem,
where reaching the limit value of the parameter causes some significant

change in the solution (here v
(2)
ε is not close to v0 = 1). For a singular

perturbation problem, the above diagram is not commutative, i.e., the two
routes by which you can travel from its top left to its bottom right will yield
different answers to “Solution when ε = 0”.

The equation u2ε + εuε − 1 = 0 is quadratic whether or not ε = 0. In
contrast, the equation εv2ε +vε−1 = 0 is quadratic when ε > 0 but becomes
linear when ε = 0. This fundamental change in its nature when ε reaches
zero makes it unsurprising that εv2ε + vε − 1 = 0 is a singularly perturbed
problem as ε → 0+ (as one can verify easily using (1.5)).

As we shall see, convection-diffusion problems form a class of singular
perturbation problems.

Exercise 1.15. Show, using the commutative diagram definition (1.5), that
the boundary value problem of Example 1.1 is a singularly perturbed prob-
lem. (Hint. Does the problem obtained by formally setting ε = 0 have a
solution?)

Exercise 1.16. Show, using the commutative diagram definition (1.5), that
the boundary value problem

−u′′(x) + 2εu′(x) = 3 for 0 < x < 1,

u(0) = u(1) = 0

is a regular perturbation problem. Here the small parameter ε multiplies
a lower-order term in the differential operator and, consequently, has much
less influence on the nature of the problem than it had in Example 1.1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



1.5. Asymptotic expansions 13

Remark 1.17. The definition (1.5) is suitable for classifying problems where
some first-order derivative has a layer (i.e., becomes large at some point as
ε → 0). But sometimes a layer appears only when higher-order derivatives
are considered (see Remark 1.5), and then one needs to modify or reinter-
pret (1.5).
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Chapter 2

Convection-Diffusion
Problems in One
Dimension

In this chapter we examine the asymptotic nature of solutions to convection-
diffusion problems in one dimension. This will provide useful insights. The
behaviour of the derivatives of these solutions, which is critical for the nu-
merical analysis that follows later, is then discussed in detail. Finally, these
two lines of attack are combined in section 2.4—decompositions of solutions.

2.1. Asymptotic analysis—an extended example

To avoid complicated algebraic details, we do not begin with the most gen-
eral situation but work instead with the second-order two-point boundary
value problem

Lu(x) : = −εu′′(x) + 2u′(x) = f(x) for 0 < x < 1,(2.1a)

u(0) = u(1) = 0,(2.1b)

where we recall that ε ∈ (0, 1]. Assume that f ∈ C∞[0, 1]. When ε is
small, this is a convection-diffusion problem: the coefficient of the first-order
derivative is much larger in magnitude than the coefficient of the second-
order derivative. It would be more precise to write u(x, ε) for the solution
of (2.1), but for convenience we use u(x).

For convenience we assumed in (2.1b) that the Dirichlet boundary
conditions are homogeneous. Inhomogeneous boundary conditions u(0) =
u0 and u(1) = u1 can be reduced to the homogeneous case by defining

15
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16 2. Convection-Diffusion Problems in One Dimension

v(x) = u(x) − (1 − x)u0 − xu1 and considering Lv(x) = f(x) + 2(u0 − u1)
with v(0) = v(1) = 0.

If one sets ε = 0, then the second-order differential equation (2.1a)
becomes a first-order differential equation—a significant change—so one ex-
pects that (2.1) is singularly perturbed. In the L∞[0, 1] norm, a definition
of singularly perturbed is that there exists x̂ ∈ [0, 1] (in fact x̂ = 1 for this
problem) such that

(2.2) lim
ε→0

lim
x→x̂

u(x) �= lim
x→x̂

lim
ε→0

u(x).

If (2.2) holds true, then the diagram (1.5) is not commutative (when one
takes an appropriate interpretation of “set ε = 0” in (1.5)).

Exercise 2.1. In Example 1.1, verify that (2.2) holds true if and only if
x̂ = 1.

All the important features of the general problem (2.1) are also present
in (1.1).

Remark 2.2. For certain exceptional combinations of the boundary condi-
tions and f , the problem (2.1) may be regularly—not singularly—perturbed.
For example, if f(x) ≡ 2k ∈ R and the boundary conditions were changed
to u(0) = 0, u(1) = k, then the solution of (2.1) becomes the well-behaved
function u(x) = kx and (2.2) is no longer satisfied for any x̂ ∈ [0, 1]; i.e.,
(2.1) is now a regular perturbation problem.

Exercise 2.3. Suppose that in (2.1) one has f(x) ≡ 2k ∈ R and u(1) = k−ε.
Is this a regular or a singular perturbation problem? Hint. Although this
problem is not the same as Exercise 2.34, it comes to the same conclusion.

We begin our analysis with a preliminary result, which is of some interest
in its own right.

Lemma 2.4. Consider the problem

−εu′′(x) + a(x)u′(x) = f(x) for 0 < x < 1,(2.3a)

u(0) = u(1) = 0,(2.3b)

where a(x) ≥ a for all x ∈ [0, 1] and some positive constant a. Then u(x)
does not have a boundary layer at x = 0 when ε is small.

Proof. By the mean value theorem, u′(z) = 0 for some z ∈ (0, 1). Set
A(x) =

∫ x
0 a(t) dt for all x ∈ [0, 1]. Multiply (2.3a) by the integrating factor

ε−1 exp(−A(x)/ε), then integrate from 0 to z. This yields

|u′(0)| =
∣∣∣∣
∫ z

0

1

ε
f(x)e−A(x)/ε dx

∣∣∣∣ ≤ ‖f‖∞
∫ z

0

1

ε
e−ax/ε dx ≤ ‖f‖∞

a
.

By Definition 1.4, u(x) cannot have a boundary layer at x = 0. �
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2.1. Asymptotic analysis—an extended example 17

The proof of Lemma 2.4 also works under the weaker hypothesis that∫ x
0 a(t) dt ≥ αx for all x ∈ [0, 1].

Exercise 2.5. Modify the proof of Lemma 2.4 to bound |u′(1))|. Is your
bound reasonably sharp? (Consider Example 1.1.)

To generate an asymptotic expansion—an infinite series—for the solu-
tion u(x) of a boundary value problem such as (2.1), one begins by construct-
ing heuristically a formal expansion. Here “formal” means that during the
construction of the expansion we do not worry whether our series converges
or can be differentiated term-by-term; we just steam ahead and generate a
series that can in principle be computed explicitly and which we propose
as an asymptotic expansion. At this stage of the analysis, nothing has been
proved. After the series has been generated formally, we then prove rigor-
ously that it really is an asymptotic expansion.

We illustrate this procedure for the problem (2.1). To begin, assume
that

(2.4) u(x) =

∞∑
n=0

un(x)ε
n.

(Note. It is not always the case that one uses integer powers of ε when con-
structing an asymptotic expansion of the solution of a singularly perturbed
differential equation, but we expect that they will work here because the
derivatives of the solution of Example 1.1, which has the same differential
operator as (2.1a), depend on only integer powers of ε.) We set out to find
the functions u0, u1, . . . explicitly. Substituting (2.4) into (2.1a) yields

−ε
∞∑
n=0

u′′n(x)ε
n + 2

∞∑
n=0

u′n(x)ε
n = f(x).

Comparing coefficients of powers of ε, one gets

(2.5) 2u′0(x) = f(x), 2u′1(x) = u′′0(x), 2u′2(x) = u′′1(x), etc.

To solve in turn each of these first-order ordinary differential equations for
u0, u1, . . . , each equation should have associated with it a single boundary
condition. But the boundary conditions (2.1b) seem to imply that un(0) =
un(1) = 0 for all n: twice as many conditions as we can handle!

Expansions like (2.4) are also used in regular perturbation problems.
They contain no special feature designed to handle boundary layers. Conse-
quently, (2.4) is unable to accommodate the boundary condition at a layer,
which, like Example 1.1, will be handled by a layer-type function. Thus
when constructing the asymptotic expansion (2.4), one must discard bound-
ary conditions where a layer occurs. Now Lemma 2.4 tells us that there is
no layer at x = 0; thus the layer (if any) is at x = 1, so we should ignore
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18 2. Convection-Diffusion Problems in One Dimension

the boundary condition at x = 1 and ask of (2.4) only that it satisfy the
condition u(0) = 0 from (2.1b). That is, we require that un(0) = 0 for all n.

We can now solve the equations (2.5) for the un(x):

u0(x) =
1

2

∫ x

0
f(t) dt, u1(x) =

f(x)− f(0)

2
, u2(x) =

f ′(x)− f ′(0)

2
, etc.

Thus (2.4) becomes

(2.6)

∞∑
n=0

[
F (n)(x)− F (n)(0)

]
εn, where F (x) :=

1

2

∫ x

0
f(t) dt.

One can show that u(x) =
∑M

n=0

[
F (n)(x)− F (n)(0)

]
εn + o(εM ) for each

M ≥ 0, so (1.4) is satisfied. But one finds that this asymptotic expansion is
not uniform for 0 ≤ x ≤ 1; it is uniform only for 0 ≤ x ≤ δ where δ is any
fixed constant in (0, 1). This situation is unsatisfactory since at x = 1 we
expect that u(x) has a boundary layer, which is its most interesting feature.
Of course the inadequacy of (2.4) near x = 1 is unsurprising because our
construction of it has ignored completely the boundary condition u(1) = 0
from (2.1b).

If (2.1) were a regular perturbation problem, then (2.6) would turn out
to be an asymptotic expansion of u(x) uniformly for 0 ≤ x ≤ 1. The
asymptotic expansion (2.6) fails to be uniform for 0 ≤ x ≤ 1 precisely
because (2.1) is singularly perturbed.

Our assumption that (2.4) is sufficiently complicated to deal fully with
the boundary value problem (2.1) has turned out to be false. What can be
done to improve the asymptotic expansion (2.6)? Consider the special case
f(x) ≡ 3. Then (2.6) collapses to the function 3x/2, but the exact solution

is given by (1.2). In this formula the terms e−1/ε are “exponentially small”
(i.e., negligible compared with any integer power of ε) and can safely be

ignored. What is missing from (2.6) is some approximation of e−(1−x)/ε;
that is, some function of (1− x)/ε must be added to (2.6).

A standard systematic way of introducing a function to handle a bound-
ary layer is as follows: define the stretched variable ρ := (1−x)/ε and rewrite
the differential equation as a function of ρ instead of a function of x.

Remark 2.6. In the formula for ρ, the number 1 appears as the location
of the layer, but the division by ε is more subtle. The purpose of stretching
the variable is to achieve the same dependence on ε in the most significant
terms of the transformed differential operator (i.e., to balance diffusion and
convection inside the layer as both processes play a role there), but the
exact scaling to use in general singular perturbation problems is not always
obvious. Here we scale by ε because the derivatives that appear in specific
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2.1. Asymptotic analysis—an extended example 19

examples, such as Example 1.1, involve integer powers of ε. See [KC96,
Chapter 4] for examples with different scalings.

Thus set ũ(ρ) ≡ u(x) for 0 < ρ < 1/ε (corresponding to 0 < x < 1).
In fact one works instead with 0 < ρ < ∞ as the details are then slightly
simpler. Now

du

dx
=

dũ

dρ
.
dρ

dx
= −1

ε
ũρ and u′′(x) =

1

ε2
ũρρ ,

so writing the differential operator in terms of ρ, we get

−εu′′ + u′ = −1

ε

(
ũρρ + ũρ

)
=: L̃ũ.

Note how the diffusion and convection terms now have the same dependence
on ε.

By its construction, the original asymptotic expansion
∑∞

n=0 un(x)ε
n in

(2.4) satisfied L (
∑∞

n=0 un(x)ε
n) = f , so the correction v(ρ) that is to be

added to this expansion must satisfy L̃v = 0, i.e., vρρ+vρ = 0. This second-
order differential equation needs boundary conditions on v(ρ) at both ρ = 0
(which corresponds to x = 1) and at ρ = ∞. We can now finally enforce
the original boundary condition u(1) = 0 by requiring that our modified
asymptotic expansion satisfies this condition, i.e., that

∞∑
n=0

un(1)ε
n + v(0) = 0.

One wants the function v to act like a boundary layer, which implies that
it dies off rapidly as ρ becomes large. Thus it is natural to impose also the
boundary condition v(∞) = 0.

The two-point boundary value problem that defines v is now completely
specified:

vρρ + vρ = 0 for 0 < ρ < ∞, v(0) = −
∞∑
n=0

un(1)ε
n, v(∞) = 0.

This can be solved explicitly:

v(ρ) = e−ρv(0)

= −e−(1−x)/ε
∞∑
n=0

un(1)ε
n

= −e−(1−x)/ε
∞∑
n=0

[
F (n)(1)− F (n)(0)

]
εn.
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20 2. Convection-Diffusion Problems in One Dimension

Adding this term to (2.6), the new proposed expansion is

uas(x) :=
∞∑
n=0

[
F (n)(x)− F (n)(0)

]
εn(2.7)

− e−(1−x)/ε
∞∑
n=0

[
F (n)(1)− F (n)(0)

]
εn.

Up to this moment, the calculation is merely formal; nothing has been
proved. Now we justify (2.7) rigorously.

To show that (2.7) is indeed a valid asymptotic expansion, i.e., that
u(x) ∼ uas(x), set

θM (x) = u(x)−
M∑
n=0

[
F (n)(x)− F (n)(0)

]
εn

+ e−(1−x)/ε
M∑
n=0

[
F (n)(1)− F (n)(0)

]
εn for M = 0, 1, 2, . . . .

We shall bound θM by means of a suitably chosen barrier function. Now
θM (1) = 0 and θM (0) = e−1/ε

∑M
n=0

[
F (n)(1)− F (n)(0)

]
εn = O

(
εM+1

)
because of the exponentially small factor e−1/ε. Also,

LθM (x) = f(x)−
M∑
n=0

[
−εF (n+2)(x) + F (n+1)(x)

]
εn

= f(x)− F ′(x) + εM+1F (M+2)(x)

= εM+1F (M+2)(x),

where the series telescoped. This spectacular cancellation of almost all terms
always happens if the proposed asymptotic expansion has been constructed
correctly. Define the barrier function b(x) = CεM+1(1 + x), where the
constant C ≥ ‖F (M+2)‖∞ is chosen such that b(0) = CεM+1 ≥ |θM (0)|.
Trivially, b(1) ≥ |θM (1)| = 0. Finally, Lb(x) = CεM+1 ≥ |LθM (x)| for
0 < x < 1. By Corollary 1.12, |θM (x)| ≤ b(x) ≤ 2CεM+1 for 0 ≤ x ≤ 1, and
this is o(εM ) uniformly for x ∈ [0, 1]. Thus (2.7) is an asymptotic expansion
of u(x), the solution of (2.1), that is valid uniformly for 0 ≤ x ≤ 1.

For more general convection-diffusion problems on [0, 1], where the co-
efficient of u′ is positive, an analysis similar to the above (see [RST08, pp.
12–15] for the details) will construct functions un(x) and vn(x) such that
for k = 0, 1, 2, . . . , one has

(2.8) u(x) =

k∑
n=0

un(x)ε
n +

k∑
n=0

vn(x)ε
n + εk+1R(x, ε, k),

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



2.2. Green’s functions 21

where |u(i)n (x)| ≤ C and |v(i)n (x)| ≤ Cε−ie−α(1−x)/ε for all i and n, with
C = C(i, n), and |R(x, ε, k)| ≤ C = C(k) uniformly for 0 ≤ x ≤ 1. Hence∑∞

n=0 un(x)ε
n +

∑∞
n=0 vn(x)ε

n is an asymptotic expansion of u(x) that is
valid uniformly for 0 ≤ x ≤ 1.

Exercise 2.7. Construct an asymptotic expansion for the regular pertur-
bation problem of Exercise 1.16, and prove that this expansion is valid uni-
formly for 0 ≤ x ≤ 1.

Exercise 2.8. A singularly perturbed boundary value problem can have
two boundary layers. Compute the exact solution of the reaction-diffusion
problem (zero-order terms can model reactions in chemical processes)

−εu′′(x) + 4u(x) = 6 on (0, 1), u(0) = u(1) = 0.

Observe that u(x) has boundary layers at x = 0 and x = 1. Construct
an asymptotic expansion for this problem using an appropriate asymptotic
sequence (derivatives of the exact solution will guide you in what powers of ε
to use—the expansion is different from (2.4)) and prove that this expansion
is valid uniformly for 0 ≤ x ≤ 1.

The construction of asymptotic expansions can be much more compli-
cated than our extended example reveals: the exact scaling to use when
stretching variables is not always easy to find, and it may take some work
to determine the boundary conditions that must be satisfied by each term
in the expansion. Further examples of asymptotic expansions of solutions
of singularly perturbed problems can be found in [KC96,O’M14,Smi85,
VeBK95]. For a comprehensive discussion of the construction of asymp-
totic expansions for a large variety of convection-diffusion problems in n
dimensions, see [Il′92].

2.2. Green’s functions

We assume the reader is familiar with the general usage of Green’s functions
as they are a standard topic in the theory of ordinary differential equations.
In this section we describe aspects of their behaviour that are peculiar to
convection-diffusion problems.

Consider the problem

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,(2.9a)

u(0) = 0, u(1) = 0,(2.9b)

where a(x) ≥ a > 0 for some constant a, and b(x) ≥ 0 on [0, 1]. Assume
that a, b, f ∈ C[0, 1]. It then follows from the standard theory of ordinary
differential equations that (2.9) has a unique solution u ∈ C2[0, 1], and the
Green’s function for (2.9) exists and is unique.
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22 2. Convection-Diffusion Problems in One Dimension

For each point x ∈ (0, 1), the Green’s function associated with the op-
erator L and the point x satisfies

(2.10) L∗
ξG(ξ, x) = δ(ξ − x) for 0 < ξ < 1, G(0, x) = G(1, x) = 0,

where δ(·) is the Dirac δ-distribution and the adjoint L∗
ξ of L is defined by

L∗
ξG(ξ, x) := −εGξξ(ξ, x)−

(
a(ξ)G(ξ, x)

)
ξ
+ b(ξ)G(ξ, x).

Here we regard G as a function of ξ with x fixed.

Then one has the key property of Green’s functions:

u(x) =

∫ 1

0
G(ξ, x)f(ξ) dξ.

In classical terms, G(·, x) ∈ C[0, 1] is defined by

(2.11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L∗
ξG(ξ, x) = 0 for 0 < ξ < x and x < ξ < 1,

limξ→x− G(ξ, x)− limξ→x+ G(ξ, x) = 0,

limξ→x− Gξ(ξ, x)− limξ→x+ Gξ(ξ, x) = 1/ε,

G(0, x) = G(1, x) = 0.

In particular, if a(·) is a positive constant and b ≡ 0, then (2.11) yields

(2.12) G(ξ, x) =

⎧⎪⎪⎨
⎪⎪⎩

[1− e−aξ/ε][1− e−a(1−x)/ε]

a(1− e−a/ε)
for 0 ≤ ξ ≤ x,

[e−a(ξ−x)/ε − e−a(1−x)/ε][1− e−ax/ε]

a(1− e−a/ε)
for x < ξ ≤ 1.

Exercise 2.9. Let a(·) be a positive constant, and let b ≡ 0. Verify that
the function defined in (2.12) satisfies (2.11). Conversely (which is a little
more difficult), start from (2.11) and derive (2.12).

A graph of this Green’s function G(·, x) for 0 ≤ ξ ≤ 1 when a ≡ 2, b ≡ 0
and x = 0.4 is displayed in Figure 2.1. It has layers at the left-hand ends of
the intervals [0, x] and [x, 1] because the coefficient −a(ξ) of the convective
derivative Gξ in (2.10) is negative; see Exercise 2.10.

Exercise 2.10. Suppose that in (2.9) one has a(x) < 0 on [0, 1]. Show
that the change of variable x �→ 1 − x (which swaps the endpoints 0 and 1
of the interval [0, 1]) will transform (2.9) to our standard boundary value
problem for which a(x) > 0. Thus the essential nature of u(x) remains
unaltered when a(x) < 0 on [0, 1], except that the boundary layer is then at
the left-hand boundary x = 0.

As is well known, an equivalent alternative definition of Green’s function
is to treat it as a function of x for fixed ξ ∈ (0, 1). For our problem, this
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Figure 2.1. Graph of Green’s function (2.12) with a = 2, x = 0.4, and
ε = 0.1, 0.05, 0.02

definition is the following:

(2.13)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
LG(ξ, x) = 0 for 0 < x < ξ and ξ < x < 1,

limx→ξ− G(ξ, x)− limx→ξ+ G(ξ, x) = 0,

limx→ξ− Gx(ξ, x)− limx→ξ+ Gx(ξ, x) = 1/ε,

G(ξ, 0) = G(ξ, 1) = 0.

A graph of G(ξ, ·), for 0 ≤ x ≤ 1 when a ≡ 2, b ≡ 0, and ξ = 0.3, is given in
Figure 2.2.

Exercise 2.11. Fix ξ ∈ (0, 1). Show by a contradiction argument that if
b > 0 and φ ∈ C[0, 1] satisfies⎧⎪⎨

⎪⎩
Lφ(x) ≥ 0 for 0 < x < ξ and ξ < x < 1,

limx→ξ− φ′(x)− limx→ξ+ φ′(x) ≥ 0,

φ(0) ≥ 0, φ(1) ≥ 0,

then φ ≥ 0 on [0, 1]. This is an extension of our old maximum principle,
Lemma 1.8. (It remains true when one has only b ≥ 0, but then the proof is
more complicated.) Use this maximum principle twice with suitable barrier
functions (you can assume the principle for b ≥ 0) to show that for fixed ξ
one has

0 ≤ G(ξ, ·) ≤ 1

a
on [0, 1].
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Figure 2.2. Graph of Green’s function (2.12) with a = 2, ξ = 0.3, and
ε = 0.1, 0.05, 0.02

Hint. For the upper bound on G you need to construct a barrier func-
tion ψ(x) resembling Figure 2.2, but you can simplify matters by taking ψ
constant for ξ ≤ x ≤ 1.

See [Lin10,RST08] for more extensive discussions of the use of Green’s
functions in the analysis of singularly perturbed differential equations.

2.3. A priori bounds on the solution and its derivatives

Asymptotic expansions of the solution u of a convection-diffusion problem
such as (2.1) give us a good idea of how u behaves. In addition, information
about the derivatives of u is needed to analyse numerical methods, so in this
section we derive pointwise bounds on these derivatives. Pointwise bounds
on derivatives imply bounds in other norms such as the Sobolev H1[0, 1]
norm.

Consider the general convection-diffusion problem

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,(2.14a)

u(0) = g0, u(1) = g1,(2.14b)

where a(x) ≥ a > α > 0 and b(x) ≥ 0 on [0,1], g0 and g1 are given constants,
and one can choose values for the constants a, α using the definition of a(·).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.
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Assume for the moment that a, b, f ∈ C[0, 1], though sometimes more reg-
ularity will be needed in the analysis that follows. It then follows from the
standard theory of ordinary differential equations that (2.14) has a unique
solution u ∈ C2[0, 1].

Remark 2.12. In fact, when a(x) ≥ a > 0 on [0, 1], then one does not need
to assume also that b ≥ 0 because this latter property can be induced by
a change of variable, provided that ε is sufficiently small. To see this, set
u(x) = v(x)ekx where the constant k is yet to be chosen. Then Lu = f is
equivalent to

(2.15) −εv′′(x) + [a(x)− 2εk]v′(x) + [b(x) + ka(x)− εk2]v(x) = f(x)e−kx,

and—for a(x) ≥ a > 0 and ε sufficiently small—one can choose k with 0 ≤
k ≤ C (some constant C that is independent of ε) such that the coefficients
of v′ and v in (2.15) are both positive, so v satisfies a differential equation
of the desired type. Now one can use barrier functions and Corollary 1.12
to analyse the solution v of (2.15) and, hence, obtain information about u
from u(x) = v(x)ekx.

Lemma 2.25 will give an alternative manifestation of this manoeuvre.

We shall frequently prove results under the hypothesis that “ε is suffi-
ciently small”. This assumption is not restrictive because if ε is bounded
away from zero, then the problem is no longer singularly perturbed and
tehniques appropriate to the case ε = 1 can be used.

Exercise 2.13. In Remark 2.12, verify that the equation Lu = f is equiv-
alent to (2.15) and that when ε is sufficiently small, one can choose k to
satisfy the conditions stated in the remark.

Lemma 2.14. Let u be the solution of (2.14). Set

C1 =
α|g1 − g0|+ ‖f‖∞ + |g0| ‖b‖∞

α
.

Then

(2.16) ‖u‖∞ ≤ C1 + |g0|
and

(2.17) |u′(0)| ≤ C1.

Proof. Set z(x) = u(x)−g0 for 0 ≤ x ≤ 1. Then z(0) = 0, |z(1)| = |g1−g0|,
and

|Lz(x)| = |f(x)− g0b(x)| ≤ ‖f‖∞ + |g0| ‖b‖∞.

Apply Corollary 1.12 to bound |z(x)| by the barrier function

θ(x) =
x

α

(
α|g1 − g0|+ ‖f‖∞ + |g0| ‖b‖∞

)
.
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This immediately implies (2.16), and (2.17) follows from

|u′(0)| = lim
x→0+

[|z(x)|/x] ≤ lim
x→0+

[θ(x)/x].

(Note that our barrier function θ needs to satisfy θ(0) = 0 in order to bound
|u′(0)|.) �

Inequality (2.17) shows that the solution u(x) of (2.14) has no boundary
layer at x = 0 as ε → 0+ (cf. Lemma 2.4). It will in general have a boundary
layer at x = 1, like Example 1.1.

Exercise 2.15. Try to imitate the proof of Lemma 2.14 to bound |u′(1)|.
You will be unable to prove |u′(1)| ≤ C, but it is instructive to see what
goes wrong. From Example 1.1 one suspects that the correct bound is
|u′(1)| ≤ Cε−1; prove this bound by using a maximum principle with the
barrier function

θ1(x) := k1

[
e−k2(1−x)/ε − e−k3(1−x)/ε

]
,

where the constants k1, k2, k3 have to be chosen appropriately. Show further
that under the stronger hypothesis that b ≥ β > 0 for some constant β, one
can obtain the desired bound on |u′(1)| by using the simpler barrier function

θ2(x) := k4

[
1− e−k5(1−x)/ε

]
for suitable constants k4, k5.

Away from x = 1, we know from section 2.1 that the solution of (2.14)
satisfies u(x) ≈ u0(x), where u0(x) is the solution of the reduced problem

(2.18) a(x)u′0(x) + b(x)u0(x) = f(x) for 0 < x < 1, u(0) = g0.

This is the same u0(x) as the first term in (2.4); it is also the term 3x/2
in (1.2). We call u0 the reduced solution of the original problem (2.14).

Exercise 2.16. Use a maximum principle and barrier function argument
on the interval [0, 1] to show that there exists a constant C such that

|u(x)− u0(x)| ≤ Cε for 0 ≤ x ≤ 1− (ε/α) ln(1/ε).

When deriving pointwise bounds on the derivatives of u, the key step is
obtaining a sharp bound on u′(x), so we shall spend a lot of time examining
how one proves this.

We have ‖a‖∞ ≤ C and ‖b‖∞ ≤ C. To push through an inductive
proof bounding u′′, u(3), . . . in Theorem 2.27 and Exercise 2.28, it emerges
that when bounding u′(x) from (2.14) one should replace the right-hand
side f(x) by the more general hypothesis that f = f(x, ε) with

(2.19)

∣∣∣∣∂if(x, ε)

∂xi

∣∣∣∣ ≤ C0

(
1 + ε−1−ie−α(1−x)/ε

)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



2.3. A priori bounds on the solution and its derivatives 27

for i = 0, 1, 2, . . . , q and x ∈ [0, 1], where q is some positive integer and C0

is some fixed constant.

Lemma 2.17. Assume (2.19). Then there exists a constant C2 such that
‖u‖∞ ≤ C2 and |u′(0)| ≤ C2.

Exercise 2.18. Prove Lemma 2.17 by imitating the proof of Lemma 2.14
but using the barrier function B(x) = C3

[
x+ e−α(1−x)/ε − e−α/ε

]
, for some

constant C3, to bound z(x) := u(x)− g0. (Observe that you need α < a to
make the proof work.) Why can’t we invoke Lemma 2.14 directly to get the
desired bounds?

We begin with a nonlocalized bound on ‖u′‖∞.

Lemma 2.19. There exists a constant C4 such that ‖u′‖∞ ≤ C4ε
−1.

Proof. As u ∈ C2[0, 1], we can choose x ∈ [0, 1] such that |u′(x)| = ‖u′‖∞.
Assume without loss of generality that ε ≤ 2‖a‖∞. Choose an interval
[x1, x2] ⊂ [0, 1] such that x ∈ [x1, x2] and x2 − x1 = ε/(2‖a‖∞). By the
mean value theorem and Lemma 2.17, there exists x̃ ∈ (x1, x2) such that

|u′(x̃)| =
∣∣∣∣u(x2)− u(x1)

x2 − x1

∣∣∣∣ ≤ 4C2‖a‖∞ε−1.

Integrating (2.14) from x to x̃ and rearranging gives

‖u′‖∞ = |u′(x)| ≤ |u′(x̃)|+ ε−1

∣∣∣∣
∫ x̃

x

[
|a(s)u′(s)|+ |f(s)|+ |b(s)u(s)|

]
ds

∣∣∣∣ .
Hence, invoking (2.19) to bound f and Lemma 2.17 to bound u, and ob-
serving that |x− x̃| ≤ ε/(2‖a‖∞), we get

‖u′‖∞ ≤ 4C2‖a‖∞ε−1 + ‖u′‖∞/2 + C ≤ Cε−1 + ‖u′‖∞/2.

The result follows by solving for ‖u′‖∞. �

Lemma 2.19 gives a sharp bound on ‖u′‖∞, but it does not reveal that
|u′(x)| is large only near x = 1. The proof of this layer property of u′ is the
main aim in the rest of section 2.3.

Theorem 2.20. There exists a constant C such that

(2.20) |u′(x)| ≤ C
[
1 + ε−1e−α(1−x)/ε

]
for 0 ≤ x ≤ 1.

Proof. A different proof of (2.20) is given each of the following four sub-
sections. �

We provide four different proofs because they introduce a variety of
techniques that are often useful when manipulating solutions of convection-
diffusion problems. Some of the proofs demand more regularity of the data

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



28 2. Convection-Diffusion Problems in One Dimension

a, b and f , so we shall where necessary make additional assumptions on this
data.

2.3.1. Kellogg and Tsan technique. In [KT78] an integrating factor
and some elementary manipulations are used to handle (2.14), as we now
describe.

1st proof of Theorem 2.20. Set h = f − bu and

A(x) =

∫ x

0
a(t) dt for 0 ≤ x ≤ 1.

Rewrite (2.14) as −εu′′ + au′ = h. Multiply this by the integrating factor
ε−1e−A(x)/ε, then integrate from x to 1. Rearranging, we get

u′(x) = e−[A(1)−A(x)]/εu′(1) + ε−1

∫ 1

t=x
e−[A(t)−A(x)]/εh(t) dt.

Invoking Lemma 2.19 to bound u′(1), and noting that A(s)−A(x) ≥ a(s−x)
for s ≥ x, it follows that

(2.21) |u′(x)| ≤ Cε−1e−a(1−x)/ε + ε−1

∫ 1

t=x
e−a(t−x)/ε|h(t)| dt.

By (2.19) and Lemma 2.17,

ε−1

∫ 1

t=x
e−a(t−x)/ε|h(t)| dt

≤ Cε−1

∫ 1

t=x
e−a(t−x)/ε

[
1 + ε−1e−α(1−t)/ε

]
dt

= C
[
1− e−a(1−x)/ε

]
+ Cε−2e−α(1−x)/ε

∫ 1

t=x
e−(a−α)(t−x)/ε dt

≤ C
[
1 + ε−1e−α(1−x)/ε

]
.

Recalling (2.21), we are done. �

Remark 2.21. While the above proof is short and requires only that a, b
and f lie in C[0, 1], it does not seem possible to generalize it to problems in
higher dimensions such as

−εΔu+ a1(x, y)ux + a2(x, y)uy + b(x, y)u = f(x, y) on Ω = (0, 1)2,

(2.22a)

u = 0 on ∂Ω,(2.22b)

where a1 > 0, a2 > 0, and b ≥ 0 on Ω̄.

Exercise 2.22. Suppose that (2.19) is replaced by the stronger inequal-
ity |f(x, ε)| ≤ C0, so f is better behaved. Show that (2.20) can then be
improved to |u′(x)| ≤ C[1 + ε−1e−a(1−x)/ε] for 0 ≤ x ≤ 1.
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2.3.2. Majorizing function (barrier function) approach. This ele-
mentary method generalizes the proof of (2.17) in Lemma 2.14.

2nd proof of Theorem 2.20. Let x0 ∈ [0, 1] be arbitrary but fixed. We shall
show that

|u′(x0)| ≤ C
[
1 + ε−1e−α(1−x0)/ε

]
.

If x0 ≥ 1 − ε, then the result is immediate from Lemma 2.19, so we can
assume that 0 ≤ x0 ≤ 1− ε. For x ∈ [x0, 1], set ψ(x) = u(x)− u(x0),

C5 =
C0 + C1‖b‖∞

a
, C6 =

C0

α(a− α)
+

2C1

1− e−α
,

and

φ(x) = C5(x− x0) + C6

[
e−α(1−x)/ε − e−α(1−x0)/ε

]
,

where C0 and C1 are defined in (2.19) and Lemma 2.17. We claim that φ is
a barrier function for ψ on the interval [x0, 1].

Now |ψ(x0)| = 0 = φ(x0) and Lemma 2.17 implies that |ψ(1)| =
|u(1) − u(x0)| ≤ 2C1 ≤ φ(1) owing to the definition of C6 and 1 − x0 ≥ ε.
Furthermore, for x ∈ (x0, 1) one has

|Lψ(x)| = |L[u(x)− u(x0)]| = |f(x, ε)− b(x)u(x0)|

≤ C0

(
1 + ε−1e−α(1−x)/ε

)
+ C1‖b‖∞(2.23)

by (2.19) and Lemma 2.17, while a short calculation shows that

Lφ(x) = C6ε
−1e−α(1−x)/εα [a(x)− α] + C5a(x) + b(x)φ(x)

≥ C6ε
−1e−α(1−x)/εα [a− α] + C5a .

Comparing this with (2.23), it is clear that the definitions of C5 and C6

imply that Lφ(x) ≥ |Lψ(x)|. Thus φ is a barrier function for ψ on the
interval [x0, 1] and Corollary 1.12 yields φ(x) ≥ |ψ(x)| on [x0, 1].

Hence∣∣u′(x0)∣∣ =
∣∣∣∣∣ lim
x→ x+

0

ψ(x)

x− x0

∣∣∣∣∣
≤ lim

x→ x+
0

∣∣∣∣ φ(x)

x− x0

∣∣∣∣ = |φ′(x0)| = C5 + C6αε
−1e−α(1−x0)/ε,

and we are done. (Note that one must have φ(x0) = 0 to derive the bound
on |u′(x0)|.) �
Remark 2.23. For the two-dimensional problem (2.22) it does not seem
possible to generalize the above argument by finding a suitable barrier func-
tion that vanishes at the point (x0, y0) while satisfying all the inequalities
required in the argument.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



30 2. Convection-Diffusion Problems in One Dimension

2.3.3. Using Green’s function. Green’s functions for (2.14) were dis-
cussed in section 2.2.

Andreev [And02] works with the special case g0 = g1 = 0. He derives
various weighted estimates of Green’s function G(x, ξ) associated with (2.14)
by considering it as a perturbation of Green’s function for the case where
b ≡ 0. (If b ≡ 0, then Green’s function can be written down explicitly as a
generalisation of (2.12).) He is thereby able to prove the inequalities

|u′(x)| ≤ C
[
1 + ε−1e−α(1−x)/ε

]
‖f‖∞ ∀x ∈ [0, 1],(2.24a)

max
0≤x≤1

∣∣∣(|u(x)|+ ε|u′(x)|)eα(1−x)/ε
∣∣∣ ≤ Cε max

0≤x≤1

∣∣∣f(x, ε)eα(1−x)/ε
∣∣∣ .(2.24b)

Since (2.19) gives only ‖f‖∞ = O
(
ε−1

)
, inequality (2.24a) does not provide

an immediate proof of Theorem 2.20.

3rd proof of Theorem 2.20. By a change of dependent variable, we can
assume that g0 = g1 = 0 without disturbing any of our hypotheses (the
value of C0 in (2.19) will then change, but we ignore this detail here). First
decompose f into two components of distinct types: From (2.19) one sees
that |f(x)| ≤ 2C0 for 0 ≤ x ≤ 1− (ε/α)| ln ε|. Choose f0 ∈ C[0, 1] to agree
with f on the interval [0, 1 − (ε/α)| ln ε|] and to satisfy ‖f0‖∞ ≤ 2C0. Set
f1 = f − f0. Then f1 ≡ 0 on [0, 1− (ε/α)| ln ε|], while for x ≥ 1− (ε/α)| ln ε|
one has

|f1(x)| ≤ |f(x)|+ |f0(x)| ≤ C0

(
3 + ε−1e−α(1−x)/ε

)
≤ 4C0ε

−1e−α(1−x)/ε.

For i = 0, 1, define vi ∈ C2[0, 1] to be the solution of Lvi = fi on (0, 1) with
vi(0) = vi(1) = 0. Applying (2.24a) to v0 yields

|v′0(x)| ≤ C
[
1 + ε−1e−α(1−x)/ε

]
,

while applying (2.24b) to v1 yields a similar result. But u = v0 + v1, so the
proof is complete. �

Remark 2.24. As the Green’s function for (2.22) is more complicated and
less well-behaved than the Green’s function for (2.14), it is uncertain whether
an argument like this could work in the two-dimensional case.

2.3.4. Applying L to u′(x) directly. The idea of this subsection is the
most obvious one of all: one uses the barrier function technique of Corol-
lary 1.12 to bound u′(x) for x ∈ [0, 1]. This technique has been used by many
authors. To push through the argument, one needs the following extension
of Corollary 1.12 to more general operators.

Lemma 2.25 (Barrier function without requiring b ≥ 0). Define the oper-
ator M : C2(0, 1) → C(0, 1) by

Mv(x) := −εv′′(x) + a(x)v′(x) + b̃(x)v(x) ∀x ∈ (0, 1),
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where b̃ ∈ C[0, 1] satisfies a2+4εb̃(x) ≥ 0 for all x (here b̃ < 0 is permitted).
Let v, w ∈ C2(0, 1) ∩ C[0, 1] satisfy Mv(x) ≥ |Mw(x)| on (0, 1) and v(x) ≥
|w(x)| for x = 0, 1. Then v ≥ |w| on [0, 1].

Proof. Set w(x) = eσxw̃(x) for x ∈ [0, 1], where σ is independent of x and
will be specified in a moment. Then a calculation gives

Mw(x) = eσx
{
−εw̃′′(x) + [a(x)− 2εσ] w̃′(x) +

[
b̃(x) + a(x)σ − εσ2

]
w̃(x)

}
= eσxM̃w̃(x),

say. Similarly, setting v(x) = eσxṽ(x), one gets Mv(x) = eσxM̃ṽ(x), so we

now have M̃ṽ(x) ≥ |M̃w̃(x)| on (0, 1). Moreover, ṽ(x) ≥ |w̃(x)| for x = 0, 1.

Set b̃ = min0≤x≤1 b̃(x). Choose σ =

[
a+

√
a2 + 4εb̃

]
/(2ε). Then 0 < σ

and −εσ2 + aσ + b̃ = 0. Thus b̃(x) + a(x)σ − εσ2 ≥ 0; consequently, M̃
satisfies the comparison principle of Corollary 1.12. Hence ṽ(x) ≥ |w̃(x)|
on [0, 1], which gives v(x) ≥ |w(x)| on [0, 1], as desired. �

Exercise 2.26. Show clearly the connection between this lemma and Re-
mark 2.12.

Note that the hypothesis a2 + 4εb̃ ≥ 0 of Lemma 2.25 will be satisfied
automatically for all sufficiently small ε, irrespective of the sign of b̃. Variants
of this lemma have been used by several authors; the earliest example seems
to be [Lor81].

Assume that a, b ∈ C1[0, 1].

4th proof of Theorem 2.20. From Lemmas 2.17 and 2.19 one has |u′(0)| ≤ C2

and |u′(1)| ≤ C4ε
−1. Now

L(u′) = −εu′′′ + au′′ + bu′

= (−εu′′ + au′ + bu)′ − a′u′ − b′u(2.25)

= fx − a′u′ − b′u.

Define the operator L̂ : C2[0, 1] → C(0, 1) by L̂v = Lv + a′v. Then L̂(u′) =
fx − b′u. Hence

|L̂(u′(x))| ≤ C7

(
1 + ε−2e−α(1−x)/ε

)
for all x ∈ (0, 1),

where C7 is some constant. We shall apply the comparison principle of
Lemma 2.25 to L̂ and the function u′, by constructing a suitable barrier
function. For any constant k one has L̂(ekx) = ekx(−εk2 + ak + b + a′);
choosing k = 2(‖b‖∞ + ‖a′‖∞)/α and taking ε sufficiently small yields
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L̂(ekx) ≥ C8 := ‖b‖∞ + ‖a′‖∞ for all x ∈ [0, 1]. One also has

L̂
(
e−α(1−x)/ε

)
=

{
α[a(x)− α]

ε
+ b(x) + a′(x)

}
e−α(1−x)/ε

≥
{
a [a− α]

ε
− ‖b‖∞ − ‖a′‖∞

}
e−α(1−x)/ε.

Thus for ε sufficiently small one obtains L̂
(
e−α(1−x)/ε

)
≥ C9ε

−1e−α(1−x)/ε

for some positive constant C9 and all x. These inequalities together yield

L̂
(
C7(e

kx/C8 + ε−1e−α(1−x)/ε/C9)
)
≥ |L̂u′(x)| for all x ∈ (0, 1).

After modifying the constants in the barrier function to handle the boundary
data for u′, Lemma 2.25 then gives

|u′(x)| ≤
(
C2 +

C7

C8

)
ekx+

(
C2 +

C7

C9

)
ε−1e−α(1−x)/ε for all x ∈ (0, 1). �

2.3.5. Bounds on higher-order derivatives of u. The next theorem
gives bounds on all derivatives of u. These bounds are sharp in their powers
of ε and the exponential decay away from x = 1; recall Example 1.1.

Theorem 2.27. Assume that the functions a and b are smooth, and assume
that f satisfies (2.19). Then there exists a constant C = C(α, q) such that
for all x ∈ [0, 1] the solution of (2.14) satisfies

(2.26) |u(i)(x)| ≤ C
(
1 + ε−ie−α(1−x)/ε

)
for i = 0, 1, 2, . . . , q.

Proof. The case i = 0 is proved in Lemma 2.17 and this is used in sec-
tion 2.3.1 to prove the case i = 1. One can modify these arguments to prove
Theorem 2.27 by induction on i. See Exercise 2.28 or [KT78]1 for more
details. �

Theorem 2.27 implies that |u(k)(1)| = O
(
ε−k

)
for k = 1, 2, . . . .

Exercise 2.28. We say that a function g(x, ε) is of class j if for some
constant C and all x ∈ [0, 1] one has∣∣∣∣∂ig(x, ε)

∂xi

∣∣∣∣ ≤ C
(
1 + ε−(i+1)e−α(1−x)/ε

)
for i = 0, 1, 2, . . . , j. Consider the two-point boundary value problem

Ly(x) = g(x, ε) on (0, 1), y(0) = y0, y(1) = y1,

1Historical Note. The first proof of Theorem 2.27 was given in a famous paper by Kellogg and
Tsan [KT78]. Subsequently, Bruce Kellogg wrote many papers on convection-diffusion problems,
but this highly cited paper was the only mathematical paper that Alice Tsan ever published!
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where g is of class j and y0, y1 are constants. Use induction on j to prove
that for some constant C (independent of ε) one has

|y(i)(x)| ≤ C
[
1 + ε−ie−α(1−x)/ε

]
for x ∈ [0, 1] and i = 0, 1, . . . , j + 1.

Hint. For the inductive step, suppose that the result is true for j = k.
Differentiate k + 1 times the equation Ly = g, and set z = y(k+1). Then
−εz′′ + az′ = r, where r depends on y, a, b, g and their derivatives of order
at most k + 1. By the inductive hypothesis,

|r(x)| ≤ C
[
1 + ε−(k+2) exp(−α(1− x)/ε)

]
.

Now imitate the proof of Lemma 2.19 to bound y(k+2)(1), then mimic the
analysis of section 2.3.1 to complete the inductive step.

Remark 2.29. In Exercise 2.28, note that near x = 1 each derivative y(i)

is better behaved than g(i) by an extra factor ε. This smoothing property of
the differential operator L will be exploited later to prove Theorem 3.11.

Remark 2.30. As well as the pointwise bounds of Theorem 2.27, estimates
of the solution u of (2.14) can be derived in other norms; see [Lin10, The-
orem 3.25] and [RST08, Theorem I.1.7].

Exercise 2.31. When discussing finite element methods, we shall use the
standard Sobolev spaces Hk with their associated norms ‖ · ‖k; in particular
‖ · ‖0 = ‖ · ‖L2 . Use Theorem 2.27 to show that

‖u‖k ≤

⎧⎨
⎩C if k = 0,

Cε−k+ 1
2 if k = 1, 2, . . . , q.

A more direct derivation of Sobolev-norm a priori bounds on solutions of
convection-diffusion problems will be given in Lemma 4.14 and section 6.1.

Exercise 2.32. If f ≡ 0 and g0 = 0 in (2.14), prove that the solution u

is a pure boundary layer, viz., |u′(x)| ≤ Cε−1e−α(1−x)/ε for 0 ≤ x ≤ 1.

Hint. Bound u(x) using the barrier function |g1|e−a(1−x)/ε, then invoke this
bound in section 2.3.1.

Remark 2.33. If in (2.14) we replace the Dirichlet boundary condition
u(1) = g1 at the layer by a Neumann boundary condition u′(1) = k (for
some constant k), then it turns out that (2.26) can be replaced by

(2.27) |u(i)(x)| ≤ C
(
1 + ε1−ie−α(1−x)/ε

)
for i = 0, 1, 2, . . . , q.

That is, the first-order derivative of u is bounded at x = 1 as ε → 0 (this is
obvious a priori from the Neumann boundary condition), while the higher-
order derivatives of u at x = 1 still blow up as ε → 0, but not as badly as
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Figure 2.3. Graph of solution to Neumann problem (2.28) with ε = 0.1, 0.05, 0.01

for a Dirichlet boundary condition. Figure 2.3 displays the solution for the
example

−εu′′(x) + 2u′(x) = 3 for 0 < x < 1,(2.28a)

u(0) = 0, u′(1) = 0,(2.28b)

where ε takes the values 0.01, 0.05, and 0.1. Here Example 1.1 has been
modified by replacing the Dirichlet condition u(1) = 0 by the Neumann
condition u′(1) = 0.

Figure 2.4 is a zoom of Figure 2.3 near x = 1. These two figures display
no obvious layer in u(x) at x = 1, but the function is nevertheless not
entirely well-behaved.

Exercise 2.34. Compute the exact solution of the boundary value prob-
lem (2.28). Hence show that the first-order derivative of u is bounded at
x = 1 as ε → 0, but the higher-order derivatives of u at x = 1 will blow up
as ε → 0. Verify that this function does not satisfy the L∞[0, 1] definition
of “singularly perturbed” that is stated in (2.2), despite the bad behaviour
of its higher-order derivatives.

There are alternative definitions of “singularly perturbed” that will be
satisfied by this function, e.g., replace u in (2.2) by u′; this is equivalent to
replacing L∞[0, 1] by the stronger Sobolev norm W 1,∞[0, 1].
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Figure 2.4. Zoom of solution to Neumann problem (2.28) near x = 1
with ε = 0.1, 0.05, 0.01

Exercise 2.35. Prove the bound (2.27) of Remark 2.33. Hint. Use Exer-
cise 1.11 to bound ‖u‖∞ and |u′(0)|. Find a boundary value problem sat-

isfied by u′(x), then apply Theorem 2.27 to this problem to bound |u(i)(x)|
for i > 0. For convenience assume in the analysis that b+a′ > 0, though this
assumption could be avoided by a change of variable, as in Remark 2.12.

Exercise 2.36. Let u be the solution of the convection-diffusion prob-
lem (2.14). Suppose that the solution u0 of the reduced problem (2.18)
happens to satisfy the boundary condition u0(1) = g1. Prove that

|u(i)(1)| ≤ Cε1−i for i = 1, 2, . . . , q − 1,

for all x ∈ [0, 1] and some constant C; thus the solution of this problem is
better behaved than typical solutions of (2.14). Hint. What boundary value
problem is satisfied by the function u− u0?

One might ask, when u is the solution of the convection-diffusion prob-
lem (2.14), can’t we obtain bounds on derivatives of u simply by differentiat-
ing uniform asymptotic expansions such as (2.8)? This is tempting, but we
have developed no theory that controls the difference between a derivative
of u and the same derivative of its asymptotic expansion. In general the dif-
ferentiation of asymptotic expansions of functions is not rigorously justified,
but for solutions of elliptic differential equations, a theory can be established.
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This approach is outlined in Theorem 2.44 below, and it leads not only to
bounds on the derivatives of u but also to a convenient decomposition of u.

Remark 2.37. Singularly perturbed linear reaction-diffusion problems, as
in Exercise 2.8, have the form

(2.29) −εu′′(x) + b(x)u(x) = r(x) on (0, 1), u(0) = γ0, u(1) = γ1,

where γ0 and γ1 are given constants, b ≥ β2 for some positive constant β,
and b, r ∈ Cq[0, 1] for some q ≥ 1. In reaction-diffusion problems there is no
convection term—a significant change from our previous theory.

For the boundary value problem (2.29), the reduced solution u0 is ob-
tained—as before—by setting ε = 0; this yields bu0 = r, i.e., u0(x) =
r(x)/b(x). Note that no boundary condition is needed for this reduced
problem! Away from x = 0 and x = 1, the reduced solution is an accurate
approximation of the true solution u of (2.29), but u typically has boundary
layers at x = 0 and x = 1 because at these points the reduced solution fails
usually to satisfy the prescribed boundary condition.

The derivatives of u satisfy

(2.30) |u(i)(x)| ≤ C
(
1 + ε−i/2e−βx/

√
ε + ε−i/2e−β(1−x)/

√
ε
)

for i = 0, 1, . . . , q and 0 ≤ x ≤ 1. Note that the scaling of the layers is 1/
√
ε,

unlike the 1/ε scaling of convection-diffusion problems.

Exercise 2.38. Let u be the solution of the reaction-diffusion problem
(2.29). Prove that there exists a constant C such that ‖u′‖∞ ≤ Cε−1/2

by modifying the proof of Lemma 2.19.

Exercise 2.39. State and prove an analogue of Exercise 2.16 for the reac-
tion-diffusion problem (2.29).

Exercise 2.40. Let u be the solution of the reaction-diffusion problem
(2.29). Suppose that γ1b(1) = r(1), i.e., the boundary condition at x = 1
happens to satisfy the reduced problem. Prove that |u′(1)| ≤ C for some
constant C. Hint. Use a barrier function, much like the proof of Lemma 2.14.

The best source of information about singularly perturbed reaction-
diffusion problems is Linß’s book [Lin10]; see also [RST08].

Example 2.41. Consider the reaction-diffusion problem

−εu′′(x) + 2u(x) = 3 for 0 < x < 1,(2.31a)

u(0) = u(1) = 0.(2.31b)

Here we have modified Example 1.1 by changing u′(x) to u(x). One can
easily compute u(x) explicitly (do this as an exercise to see how the bounds
in (2.30) arise), and its graph is drawn in Figure 2.5. Note that u(x) has
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Figure 2.5. Solution to reaction-diffusion problem (2.31) with ε = 0.1, 0.05, 0.01

boundary layers at both x = 0 and x = 1 and these layers are less sharp than
in the convection-diffusion example of Figure 1.1 because u′ is O (1/

√
ε) in

reaction-diffusion boundary layers but u′ is O (1/ε) in convection-diffusion
boundary layers.

Remark 2.42. If a(x) changes sign inside the domain (the point where this
happens is called a turning point), then the solution u(x) may have interior
layers and/or boundary layers. The simplest case is when a(x) = (x−x0)â(x)
for some x0 ∈ (0, 1) and â > 0 on [0, 1], with b > 0 on [0, 1]; then a > 0
on (x0, 1] and our usual exponential boundary layer appears at x = 1, while
a < 0 on [0, x0) causes another exponential boundary layer at x = 0 (recall
Exercise 2.10). There are no other layers.

If a(x) = −(x − x0)â(x) with â > 0 on [0, 1], the solution is entirely
different: it has an interior layer at x = x0 and no boundary layers. For
example, the solution of

−εu′′(x)− 2xu′(x) = 2 exp(−x2/ε) on (−1, 1),(2.32a)

u(−1) = u(1) = 0(2.32b)

is u(x) = exp(−x2/ε)− exp(−1/ε); its graph is drawn in Figure 2.6.

Interior layers caused by turning points have a more complicated struc-
ture than exponential boundary layers, and we do not discuss them further;
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Figure 2.6. Interior layer: solution of (2.32) with ε = 0.1, 0.05, 0.01

see [Lin10, Section 3.5] and [RST08, Section I.1.2], and a survey of the
literature on turning point problems is given in [SRP13].

Exercise 2.43. An interior layer can also arise if f is discontinuous. These
layers are simpler than the turning point interior layers of Remark 2.42.
Compute the exact solution of the problem

−εu′′ + 2u′ = f on (0, 2), u(0) = u(2) = 0,

where f = 1 on (0, 1) and f = 3 on (1, 2), and hence write down bounds on
the derivatives of u.

2.4. Decompositions of the solution

Theorems 2.44 and 2.48 will show that the solution u of the convection-
diffusion problem (2.14) can be written as the sum of a well-behaved term
and a layer term. Such decompositions of u aid our insight when constructing
accurate numerical methods and are often needed in the rigorous analysis
of such methods.

Theorem 2.44 (Standard decomposition of u). Let q be a positive integer.
Let u be the solution of (2.14). Assume that the functions a, b, and f are
sufficiently smooth. Then there is a splitting u = S + E such that

‖S(j)‖∞ ≤ C and |E(j)(x)| ≤ Cε−je−α(1−x)/ε

for 0 ≤ j ≤ q and 0 ≤ x ≤ 1, where the constant C = C(q).
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Proof. Recall the standard asymptotic expansion of u(x) given in (2.8),
and for convenience write R(x) for the remainder R(x, ε, k). Observe that
we have a bound only on ‖R‖∞; no information is available on the deriva-
tives of R(x). As the un and vn are computed explicitly and Lu = f ,
one can determine LR(x) from (2.8). Now the deep a priori estimates of
Schauder for elliptic differential equations [LU68, p. 110] will yield the
bound ‖R(j)‖∞ ≤ Cε−j for 0 ≤ j ≤ q (one first needs to stretch the variable
x via the transformation x → t := x/ε to obtain a standard elliptic operator
to which [LU68] can be applied).

Choosing k = q−1 in (2.8), set S =
∑q−1

n=0 un(x)ε
n+εqR(x) and E(x) =∑q−1

n=0 vn(x)ε
n. The result now follows immediately from what is known

about the terms in S and E. �

In this theorem and other similar results, S is called the smooth com-
ponent or regular component of u, and E is called the layer component.

Remark 2.45. In the literature dealing with singularly perturbed differen-
tial equations, “smooth” is generally used in this nonstandard way to mean
that a function has certain low-order derivatives bounded independently of
the perturbation parameter.

Theorem 2.27 is adequate when proving convergence of some numerical
methods for (2.14), but for others one needs to invoke Theorem 2.44 in order
to analyse separately the smooth and layer components of u. At first sight
Theorem 2.44 seems the stronger of the two results, but this is not the case,
as a result of Linß [Lin01] shows.2

Theorem 2.46. Theorems 2.27 and 2.44 are equivalent.

Proof. Clearly, Theorem 2.44 implies Theorem 2.27.

For the converse implication, assume that (2.26) holds true for some
fixed positive integer q. Set x∗ = 1− (qε/α) ln(1/ε), and define S(x) = u(x)

for 0 ≤ x ≤ x∗. Then (2.26) and the choice of x∗ ensure that |S(j)(x)| ≤ C
for 0 ≤ j ≤ q and 0 ≤ x ≤ x∗. Consequently, one can (e.g., using a Taylor

expansion of S(x) about x = x∗) extend S to [0, 1] with |S(j)(x)| ≤ C for
0 ≤ j ≤ q and 0 ≤ x ≤ 1.

Now set E = u− S. Then E(x) ≡ 0 for 0 ≤ x ≤ x∗, and for x∗ < x ≤ 1,
we have

|E(q)(x)| ≤ |u(q)(x)|+ |S(q)(x)| ≤ C
(
1 + ε−qe−α(1−x)/ε

)
≤ Cε−qe−α(1−x)/ε

2Historical Note. The author of the proof of Theorem 2.46, which appeared in [Lin01], is
unknown! Torsten Linß submitted his paper [Lin01] to a journal, and received a referee report
on the paper which stated and proved Theorem 2.46—but referee reports are always written
anonymously so we do not know who this mysterious mathematician was.
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from the definition of x∗. Using induction (with a decreasing index), inte-
grate E(k)(x) for k = q, q − 1, . . . , 1 to get

|E(k−1)(x)| =
∣∣∣∣
∫ x

x∗
E(k)(s) ds

∣∣∣∣
≤ C

∫ x

x∗
ε−ke−α(1−s)/ε ds

≤ Cε−(k−1)e−α(1−x)/ε for x∗ < x ≤ 1. �
Exercise 2.47. Prove rigorously the claim in the above proof that if the
function S is defined on [0, x∗] with |S(j)(x)| ≤ C for 0 ≤ j ≤ q and 0 ≤ x ≤
x∗ < 1, then one can extend S to [0, 1] with |S(j)(x)| ≤ C for 0 ≤ j ≤ q and
0 ≤ x ≤ 1. (Note. The two constants “C” here can take different values.)

For the analysis of certain finite difference methods on Shishkin meshes
(which we will meet in Section 3.4), one needs a decomposition of u with a
further property that is originally due to Shishkin; see the references in the
books [FHM+00] and [MOS12] by Shishkin et al. By slightly modifying
the construction of the asymptotic expansion (2.8) (see [DR97,MOS12]
and [RST08, page 23]), one can prove the following strengthening of The-
orem 2.44:

Theorem 2.48 (Shishkin decomposition of u). Let q be a positive integer.
Let u be the solution of (2.14). Assume that the functions a, b, and f are
sufficiently smooth. Then there is a splitting u = S + E such that

(2.33) ‖S(j)‖∞ ≤ C and |E(j)(x)| ≤ Cε−je−α(1−x)/ε for 0 ≤ x ≤ 1

for 0 ≤ j ≤ q and 0 ≤ x ≤ 1, where the constant C = C(q), and in addition

LS(x) = f(x) and LE(x) = 0 for 0 ≤ x ≤ 1.

Proof. In the standard asymptotic expansion for Lu := εu′′+au′+ bu = f ,
one has

u(x) =

q−1∑
n=0

εnun(x) +

q−1∑
n=0

εnvn(ρ) + εqR(x, ε, q − 1)

for each positive integer q, where ρ = (1 − x)/ε. The terms un here are
defined by

L0u0 = f, u0(0) = 0, and L0un = −u′′n−1, un(0) = 0 for n = 1, 2, . . . , q−1,

where L0 : w �→ aw′ + bw is the reduced operator obtained by setting ε = 0
in L. The vn(x) satisfy

L̃v0 = 0, v0(0) = −u0(1), v0(∞) = 0,

L̃vn = L̃∗(v0, v1, . . . , vn−1), vn(0) = −un(1),

vn(∞) = 0 for n = 0, 1, . . . , q − 1,
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Figure 2.7. Graph of S for Example 1.1 when ε = 0.01

where L̃ = − d2

dρ2
+ a(1)

d

dρ
and L̃∗(v0, v1, . . . , vn−1) =

n∑
i=1

a(i)(1)

i!

dvn−i

dρ
.

The Shishkin decomposition is

u(x) =

q−1∑
n=0

εnun(x) + εqu∗q︸ ︷︷ ︸
=:S

+

q−1∑
n=0

εnvn(ρ) + εqv∗q︸ ︷︷ ︸
=:E

,

where

Lu∗q = u′′q−2, uq(0) = uq(1) = 0

(note that L, not L0, is used here) and

L̃v∗q = −ε−qL̃

(
q−1∑
n=0

vn(ρ)

)
, v∗q (0) = 0, v∗q (1/ε) = −

q−1∑
n=0

vn(1/ε).

One can use Theorem 2.27 to verify that the conclusions of Theorem 2.48
apply to S. To bound E and its derivatives, use Exercise 2.32. �

Graphs of S and E for Example 1.1 are displayed in Figures 2.7 and 2.8.

Remark 2.49. The history of solution decompositions such as those de-
scribed in Theorems 2.44 and 2.48 can be traced back to earlier work of
Bakhvalov and Volkov; see [KO10].
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Figure 2.8. Graphs of E for Example 1.1 when ε = 0.01

Remark 2.50. Reaction-diffusion problems of the form Lu = −εu′′+bu = r
on (0, 1), with u(0) and u(1) given and b ≥ β2 > 0 on [0, 1], were discussed
in Remark 2.37. The solutions u of such problems have layers at both x = 0
and x = 1, and the decomposition that is the analogue of Theorem 2.48 is
derived in [MOS12, Chapter 6]: u = S + E0 + E1, where

‖S(j)‖∞ ≤ C, |E(j)
0 (x)| ≤ Cε−j/2e−βx/

√
ε, |E(j)

1 (x)| ≤ Cε−j/2e−β(1−x)/
√
ε

for 0 ≤ j ≤ q and 0 ≤ x ≤ 1, with

LS(x) = r(x), LE0(x) = LE1(x) = 0 for 0 ≤ x ≤ 1.

Here q is a positive integer, C = C(q), and we assume that the functions b
and r are sufficiently smooth.
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Chapter 3

Finite Difference
Methods in One
Dimension

Consider the convection-diffusion problem

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,(3.1a)

u(0) = u(1) = 0,(3.1b)

where 0 < ε ≤ 1, a(x) ≥ a > α > 0, and b(x) ≥ 0 on [0,1]. Assume that
a, b, and f lie in C1[0, 1]. As we pointed out in section 2.1, general Dirichlet
boundary conditions u(0) = g0, u(1) = g1 are easily reduced to (3.1b) by a
simple change of variable.

Let N be a positive integer. We partition [0,1] by the equidistant mesh
xi = ih for i = 0, . . . , N , where h := 1/N . On this mesh we examine how
to compute an approximation �uN := (uN0 uN1 · · ·uNN )T of (u0 u1 · · ·uN )T ,
where T denotes transpose; here and subsequently we write ui for u(xi), ai
for a(xi), etc.

Standard discretizations of differential equations use a central difference
approximation of the convective term. That is, one approximates u′(xi)
by (uNi+1 − uNi−1)/(2h), which is formally an O

(
h2
)
approximation. Using

this discretization and the standard approximation (uNi−1 − 2uNi + uNi+1)/h
2

of u′′(xi) produces a difference scheme B�uN = �fN whose matrix B is tridi-
agonal with ith row

(3.2)

(
0 · · · 0 − ε

h2
− ai

2h

2ε

h2
+ bi − ε

h2
+

ai
2h

0 · · · 0
)

43
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Figure 3.1. Example 1.1 with ε = 0.01; solution computed by central
differencing with N = 16

for i = 1, . . . , N−1. The 0th and Nth rows of B, which impose the boundary
conditions (3.1b), are (1 0 · · · 0) and (0 · · · 0 1). The right-hand side of the

scheme is �fN := (0 f1 f2 · · · fN−1 0)T .

In the particular case of Example 1.1, where a(x) ≡ 2, b(x) ≡ 0 and
f(x) ≡ 3, the solution of this difference scheme is

uNi =
3xi
2

− 3(rN−i − rN )

2(1− rN )
with r :=

2ε− h

2ε+ h

(we leave this as an exercise). In practice one usually has N � 1/ε, so
ε � h and r ≈ −1. Consequently, the computed solution will oscillate as i
varies, quite unlike the true solution (1.2); see Figure 3.1.

Remark 3.1. To see that these oscillations are also present in the general
case (3.1), consider (3.2) with i = N − 1. Taking ε � h2, this equation is
essentially

fN−1 =
aN−1(u

N
N − uNN−2)

2h
+ bN−1u

N
N−1 = −

aN−1u
N
N−2

2h
+ bN−1u

N
N−1,

upon applying the boundary condition. Hence, uNN−2 = O (h); but because
of the boundary layer in u(x) at x = 1, we expect that uN−2 is not close
to zero. Thus uNN−2 is far from the true value uN−2, and this is due to
oscillations in the computed solution.
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Exercise 3.2. Suppose that central differencing on an equidistant mesh of
width h = 1/N is used to solve the problem

−εu′′ + au′ + bu = 0 on (0, 1), u(0) = 0, u(1) = 1,

where a > 0 and b ≥ 0. Assume that minx a(x) > 2ε/h. By considering the
signs of the coefficients in the difference scheme, show that the computed
solution {uNi }Ni=0 has uNi uNi+1 < 0 for i = 1, 2, . . . , N − 1. This conclusion
says that the computed solution oscillates around zero (the solution of the
reduced problem) analogously to what we see in Figure 3.1. Hint. A similar
argument can be found in [MS12].

Why does this standard method give us these oscillations? What has
gone wrong? In the next section we will reveal the answers to these ques-
tions.

3.1. M-matrices, upwinding

A square matrix A = (Aij) is said to be an M-matrix1 if Aij ≤ 0 for all
i �= j and A−1 exists with (A−1)ij ≥ 0 for all i, j. Difference schemes
that employ M-matrices are common because they are desirable: they are
generally stable and are more amenable to analysis.

Exercise 3.3. Let A = (Aij) be an M-matrix. Prove that Aii > 0 for all i.

Our central difference scheme above fails to satisfy the M-matrix sign
condition on the off-diagonal entries since Bi,i+1 > 0 when ε is small relative
to h. If h‖a‖∞ ≤ 2ε, then the sign condition is satisfied, and it turns out that
the difference method gives an acceptable computed solution, but to enforce
this inequality when ε is small is impractical in many problems (especially in
partial differential equations, where multiple dimensions are involved) since
it can lead to an intolerable number of mesh points.

The second M-matrix requirement—that A−1 exists with (A−1)ij ≥ 0
for all i and j—does not seem easy to verify in practice. Fortunately there
are more tractable alternatives, as stated in the next two lemmas.

A square matrix A = (Aij) is said to be strictly diagonally dominant if
Aii >

∑
j 
=i |Aij | for all i.

Lemma 3.4. Suppose that the square matrix A = (Aij) satisfies Aij ≤ 0
for all i �= j. Then A−1 exists and (A−1)ij ≥ 0 for all i, j if A is strictly
diagonally dominant with Aii > 0 for all i.

Proof. See, e.g., [QV94, Lemma 2.1.1]. �
1Historical Note. The “M” in M-matrix refers to Hermann Minkowski, who studied some of

their properties. M-matrices have been exhaustively analysed in the research literature.
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Consider a vector w = (w1, w2, . . . , wn) ∈ Rn. By w > 0 we mean that
wi > 0 for i = 1, 2, . . . , n. Similarly, w ≥ 0 means wi ≥ 0 for all i. We set
|w| = (|w1|, |w2|, . . . , |wn|). The discrete L∞ norm ‖·‖∞,d for vectors in Rn is
defined by ‖w‖∞,d = maxi |wi|. The matrix norm ‖·‖∞,d is the norm induced
by the corresponding vector norm ‖·‖∞,d; for the n×n matrix A = (Aij) it is
the “maximum row sum” norm, viz., ‖A‖∞,d = maxi

∑
j |Aij |. Matrix norms

induced by vector norms are discussed in many basic numerical analysis
books.

Lemma 3.5. Suppose that the n× n matrix A = (Aij) satisfies Aij ≤ 0 for
all i �= j. Then A−1 exists and (A−1)ij ≥ 0 for all i, j if and only if there
exists a vector w > 0 in Rn such that Aw > 0. Furthermore, we have

(3.3) ‖A−1‖∞,d ≤ ‖w‖∞,d

mink(Aw)k
.

Proof. See [Boh81] or [AK90]. �

One can often construct a vector w that satisfies the conditions of
Lemma 3.5 by first finding a function w(x) such that w > 0 and Lw > 0,
then restricting w to the mesh to form w.

For M-matrices we have the following discrete analogues of Lemma 1.8
and Corollary 1.12.

Lemma 3.6 (Discrete maximum principle). Let A be an M-matrix. If w is
a vector with Aw ≥ 0, then w ≥ 0.

Proof. w = (A−1)(Aw) ≥ 0, because A−1 ≥ 0 and Aw ≥ 0. �

Lemma 3.7 (Discrete barrier function). Let A be an M-matrix. If w, z are
vectors such that |Aw| ≤ Az, then |w| ≤ z.

Proof. Now A(z−w) ≥ 0, so w − z ≥ 0 by Lemma 3.6. Similarly, one has
z+w ≥ 0, and the result follows. �

When we take A to be the matrix arising from a discretisation of a
boundary value problem, at first sight the boundary data requirement of
Corollary 1.12 (the continuous analogue of Lemma 3.7) seems to be missing
from Lemma 3.7, but this is deceptive. The first and last rows of A will
include this information—see the construction of our matrix B above.

Returning to our difference scheme and its failure to generate an M-
matrix, we see that the “incorrect” sign of Bi,i+1 comes from the central
difference approximation u′(xi) ≈ (uNi+1 − uNi−1)/(2h). This approximation
is generally recommended in basic courses in numerical methods because
it gives an O

(
h2
)
consistency error, but this consistency property is use-

less when the method is (as we saw) unstable. To cure the instability, for
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convection-diffusion problems one can approximate u′(xi) by the simple up-
winding formula (uNi − uNi−1)/h. Although the consistency error is now only
O (h), the ith row of the scheme is(

0 · · · 0 − ε

h2
− ai

h

2ε

h2
+

ai
h

+ bi − ε

h2
0 · · · 0

)
,

which has the correct sign pattern. Hence, writing B for the associated
(N + 1) × (N + 1) matrix that incorporates the boundary conditions, one
has Bij ≤ 0 for i �= j, as desired.

Lemma 3.8. The coefficient matrix B for the simple upwind scheme is an
M-matrix, and the scheme is uniformly stable with respect to the perturbation
parameter

‖uh‖∞,d ≤ C‖Buh‖∞,d,

with a stability constant C that is independent of ε and h.

Proof. Clearly, Bij ≤ 0 for i �= j. We construct a suitable majorizing
vector. Choose w(x) := 1 + x, so Lw(x) ≥ α. Let v be the restriction of
w to the mesh. A quick computation yields Bv ≥ min{1, α}1, where 1 =
(1, 1, . . . , 1)T . Thus by Lemma 3.5 the matrixB is an M-matrix, and one gets
the desired stability bound with stability constant C = 1/min{1, α}. �

Simple upwinding for (2.14) uses the one-sided difference (uNi − uNi−1)/h

to approximate u′(xi), but the alternative one-sided difference (uNi+1−uNi )/h
would not give the correct sign pattern in the matrix. Upwinding (of which
there are many variants) means taking a nonsymmetric finite difference ap-
proximation that is weighted away from the layer. With simple upwinding,
for ε � h2 the scheme almost decouples the boundary condition at x = 1
from the values at the interior nodes. This is exactly what is needed to avoid
the anomaly described in Remark 3.1.

Remark 3.9. In its various forms, upwinding uses discretisations of the con-
vection term that are suitable for solving the reduced problem (2.18). This
is more evident when dealing with the reduced problem (4.3) for convection-
diffusion problems posed on domains in two dimensions. The construction
and analysis of numerical methods for such “first-order hyperbolic” equa-
tions and their nonlinear generalisations has been the subject of much re-
search.

Figure 3.2, where N = 10 so the mesh points are 0, 0.1, 0.2, . . . , 1, il-
lustrates the difference between the central difference and upwind approx-
imations of u′(xN−1) in the typical case when N � 1/ε. Clearly, the
central difference approximation (the slope of the dashed line through the
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48 3. Finite Difference Methods in One Dimension

Figure 3.2. Central difference and upwind approximations of u′(xN−1)

points (0.8, u(0.8)) and (1, 0)) of u′(xN−1) = u′(0.9) is poor; the simple up-
wind approximation (the slope of the dotted line through (0.8, u(0.8)) and
(0.9, u(0.9))) is much better.

Remark 3.10. At first sight it is surprising that, although the singularly
perturbed nature of (3.1) comes from the small coefficient ε of the diffusion
term, the instability difficulties in discretisation arise from how the convec-
tion term is treated. The reason is that in the classical case ε = 1 the
diffusion term stabilizes the numerical method, but this ability is greatly
diminished when ε is small, so we must turn to the convection term for
assistance in stabilization. In section 3.2 we shall see that convective dis-
cretisations such as simple upwinding are in fact equivalent (in a certain
sense) to artificially increasing the value of ε.

The first satisfactory investigation into the accuracy of simple upwinding
is due to Kellogg and Tsan [KT78]. Their delicate analysis derived a tight
bound on the consistency error of the method, then converted this to the
following convergence result by means of discrete barrier functions. The
proof of their result that we now give follows [KT78] for the most part; see
also [RST08, Section I.2.1.2].

Theorem 3.11 (Error bound for simple upwinding on an equidistant mesh).
Let {uNi }Ni=0 be the solution to (3.1) computed using simple upwinding on an
equidistant mesh of diameter h with N subintervals. Then the error at the
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inner grid points {xi : i = 1, . . . , N − 1} satisfies

|u(xi)− uNi | ≤

⎧⎨
⎩Ch

[
1 + ε−1 exp

(
−β(1−xi)

ε

)]
if h ≤ ε,

C
[
h+

(
1 + αh

ε

)−(N−i)
]

if h > ε,

where β := ln(1 + α).

Proof. Let LN denote the discrete simple upwinding operator. Its con-
sistency error τi at each interior mesh point xi is estimated using Taylor’s
formula or Peano’s theorem, and one obtains

(3.4) |τi| := |LNu(xi)− f(xi)| ≤ C

∫ xi+1

xi−1

(
ε|u(3)(t)|+ |u(2)(t)|

)
dt.

Invoking Theorem 2.27 to bound the terms in (3.4) yields

|τi| ≤ Ch+ Cε−2

∫ xi+1

xi−1

exp [−α(1− t)/ε] dt

= Ch+ Cε−1 sinh

(
αh

ε

)
exp

(
− α(1− xi)

ε

)
.(3.5)

Case h ≤ ε. Then αh/ε ≤ α. Now 0 < sinh t ≤ Ct for 0 < t ≤ C, so (3.5)
yields

(3.6) |τi| ≤ Ch

[
1 + ε−2 exp

(
− α(1− xi)

ε

)]
.

We want to apply Lemma 3.7 by constructing a discrete barrier function
that will improve the factor ε−2 in this bound to ε−1. Now

LN

(
1 +

αh

ε

)i

≥ 1

h
· αh
ε
(ai − α)

(
1 +

αh

ε

)i−1

≥ C

ε

(
1 +

αh

ε

)i−1

≥ C

ε

(
1 +

αh

ε

)i

for some constant C > 0, using h ≤ ε. Thus

LN

(
1 +

αh

ε

)−(N−i)

≥ C

ε

(
1 +

αh

ε

)−(N−i)

≥ C

ε

(
eαh/ε

)−(N−i)

=
C

ε
exp

(
− α(1− xi)

ε

)
.
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But (3.6) now implies that one can choose a constant C∗ > 0 such that

w∗
i := C∗h

[
xi + ε−1

(
1 +

αh

ε

)−(N−i)
]

is a barrier function for τi. Hence

(3.7) |ui − uNi | ≤ w∗
i ≤ C∗h

[
1 + ε−1

(
1 +

αh

ε

)−(N−i)
]
for all i.

Set β = ln(1 + α) and φ(t) = eβt − (1 + αt) for 0 ≤ t ≤ 1. Then
φ(0) = φ(1) = 0 and φ′′(t) = β2eβt > 0 for 0 < t < 1. Consequently,
φ(t) ≤ 0 for 0 ≤ t ≤ 1, i.e., eβt ≤ 1 + αt for 0 ≤ t ≤ 1. Thus (3.7) implies
that

|τi| ≤ C∗h

[
1 + ε−1

(
eβh/ε

)−(N−i)
]
= C∗h

[
1 + ε−1 exp

(
− β(1− xi)

ε

)]
.

Case h > ε. This case (which is the case one meets in practice) is more
difficult. We begin with a simple decomposition of u. Set

v(x) =
εu′(1)

a(1)
exp

(
− a(1)(1− x)

ε

)
and z(x) = u(x)− v(x) for x ∈ [0, 1].

Thus u = v+z. Note that |εu′(1)| ≤ C by Theorem 2.27. Now v is evidently
a layer function, and

z′(1) = u′(1)− v′(1) = 0

by the definition of v, so we expect z to be better behaved than u. (One
could instead use one of the decompositions of section 2.4; the above simpler
decomposition comes from [KT78].) The bound |z(0)| ≤ C follows from
Lemma 2.17. Also,

|Lz(x)|

=

∣∣∣∣f(x)− εu′(1)

a(1)

[
−ε

(a(1))2

ε2
+

a(x)a(1)

ε
+ b(x)

]
exp

(
− a(1)(1− x)

ε

)∣∣∣∣
≤ C[1 + ε−1e−a(1)(1−x)/ε]

≤ C[1 + ε−1e−α(1−x)/ε].

That is, z satisfies the hypotheses of Remark 2.33 and Exercise 2.35, whence

(3.8) |z(j)(x)| ≤ C[1 + ε1−je−α(1−x)/ε] for x ∈ [0, 1].

Now define discrete functions {vNi }Ni=0 and {zNi }Ni=0 by

LNvNi = Lv(xi) and LNzNi = Lz(xi) for i = 1, . . . , N − 1,
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with vN0 = v(x0), vNN = v(xN ), zN0 = z(x0), zNN = z(xN ). Then for each i
one has

(3.9) |u(xi)−uNi | = |v(xi)+z(xi)−(vNi +zNi )| ≤ |v(xi)−vNi |+|z(xi)−zNi |.

For the consistency error τi(z) associated with z, like the derivation
of (3.5) one gets

|τi(z)| ≤ Ch+ C sinh

(
αh

ε

)
exp

(
− α(1− xi)

ε

)
.

(Unlike (3.5) there is no multiplying factor ε−1 here because of the extra
positive power of ε in (3.8).) As h > ε, we use the inequality sinh t ≤ 2et

for t > 0. Hence

|τi(z)| ≤ Ch+ C exp

(
− α(1− xi+1)

ε

)

= Ch+ C
(
e−αh/ε

)N−(i+1)
(3.10)

≤ Ch+ C

(
1 +

αh

ε

)−[N−(i+1)]

by an elementary inequality. But a computation shows that

(3.11) LN

(
1 +

αh

ε

)i

≥ 1

h
· αh
ε
(ai − α)

(
1 +

αh

ε

)i−1

≥ C

h

(
1 +

αh

ε

)i

,

using h > ε. It follows from (3.10) and (3.11) that one can choose a con-
stant C such that

Ch

[
xi +

(
1 +

αh

ε

)−[N−(i+1)]
]

is a barrier function for z(xi)− zNi . Thus

(3.12) |z(xi)− zNi | ≤ Ch

[
xi +

(
1 +

αh

ε

)−[N−(i+1)]
]
≤ Ch.

Now we deal with v. Observe first that for all i,

v(xi) ≤ C exp

(
− α(1− xi)

ε

)
=
(
e−αh/ε

)N−i
≤ C

(
1 +

αh

ε

)−(N−i)

.

From the definition of v, one can show readily that |Lv(x)| ≤ Cε−1|v(x)|.
Hence

|LNvNi | = |Lv(xi)| ≤
C

ε
v(xi) ≤

C

ε

(
e−αh/ε

)N−i
≤ C

h

(
1 +

αh

ε

)−(N−i)
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by Exercise 3.13. Appealing again to (3.11) and the discrete comparison
principle, we obtain

|vNi | ≤ C

(
1 +

αh

ε

)−(N−i)

.

Thus

(3.13) |v(xi)− vNi | ≤ |v(xi)|+ |vNi | ≤ C

(
1 +

αh

ε

)−(N−i)

.

Combining the inequalities (3.9), (3.12), and (3.13) completes the proof 2

for the case h > ε. �

Remark 3.12. The discrete barrier function (1 + αh/ε)−(N−i) that is used
twice in the proof of Theorem 3.11 is a solution of LNφi = 0 when a ≡ α,
b ≡ 0. It is an approximation of the continuous layer function Φ that is a
solution of LΦ = 0.

Exercise 3.13. Here is the proof of the inequality

(3.14) ε−1
(
e−αh/ε

)N−i
≤ Ch−1

(
1 +

αh

ε

)−(N−i)

for h > ε from [KT78, p. 1031]. Can you give a shorter proof?

Since et ≥ 1 + t and t(1 + t)e−t ≤ C for all t ≥ 0 where C is some
constant, it follows that t ≥ ln(1 + t) and ln t ≤ t− ln(1 + t) + lnC. Hence

ln t ≤ 1− xi
h

[t− ln(1 + t)] + lnC.

Let t = αh/ε, then

ln
αh

ε
− 1− xi

h
· αh
ε

≤ −1− xi
h

ln

(
1 +

αh

ε

)
+ ln c.

Taking the exponential of both sides, we get (3.14).

Exercise 3.14. Assume h > ε. Prove the inequality(
1 +

αh

ε

)−(N−i)

≤ exp

(
− α(1− xi)

αh+ ε

)
,

where i ∈ {1, 2, . . . , N − 1}. Hint. First prove the inequality ln(1− t) < −t
for 0 < t < 1.

2Historical Note. Did you think that the proof of Theorem 3.11 was complicated? When
it appeared in 1978 in [KT78], it was greeted with relief and joy by numerical analysts as a
significant simplification of the then-standard method of analysis of finite difference methods for
convection-diffusion problems: a horrendously complicated approach known as the double-mesh
principle. By their elegant and powerful use of discrete barrier functions, Kellogg and Tsan [KT78]
revolutionised numerical analysis in this area. Up to the present day, almost every finite difference
analysis of a convection-diffusion two-point boundary value problem uses discrete barrier functions.
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Figure 3.3. Example 1.1 with ε = 0.01; solution computed using simple
upwinding with N = 16

By invoking Exercise 3.14, the bound of Theorem 3.11 in the case h > ε
can be replaced by

C exp

(
− α(1− xi)

αh+ ε

)
.

If h � ε, then Theorem 3.11 implies that the upwind scheme yields an
accurate solution at all points. But when h ≈ ε, then the scheme is only
O (1)-accurate at interior mesh points that lie close to or inside the boundary
layer; see Figure 3.3.

Remark 3.15. This type of error behaviour can lead to disconcerting and
puzzling results in numerical experiments with simple upwinding (and other
forms of upwinding). Suppose that for a given convection-diffusion problem,
initially one has an equidistant mesh with h � ε, so all mesh points in (0,1)
lie well outside the layer. Now consider what happens if we repeatedly bisect
each interval and compute a fresh solution. At first the interior mesh points
remain outside the layer, so by Theorem 3.11 the numerical results show that
the maximum nodal error is small. But as we continue to bisect the mesh,
eventually mesh points begin to move into the layer—where the accuracy of
the computed solution is only O (1)—so at this stage mesh bisection causes
the maximum nodal error to increase! See Figure 3.4 in which the maximum
nodal error (i.e., the error measured in ‖ · ‖∞,d) for N = 16 is greater than
the error for N = 8.
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Figure 3.4. Example 1.1 with ε = 0.01; solution computed by simple
upwinding for N = 8, 16

Exercise 3.16. Suppose that the Dirichlet boundary condition u(1) = 0
in (3.1) is changed to the Neumann condition u′(1) = k for some constant k.
Then Remark 2.33 gives bounds on the derivatives of u showing that the
layer at x = 1 is now weaker. Suppose we solve this problem using simple
upwinding on an equidistant mesh x0, . . . , xN of diameter h, approximating
the Neumann condition by (uNN − uNN−1)/h = k. Modify the arguments of

Theorem 3.11 to show that maxi |u(xi)− uNi | ≤ Ch for some constant C.

3.2. Artificial diffusion

While upwinding does remove unnatural oscillations from the computed
solution, one pays a price for this: the layers in the computed solution
are excessively smeared, i.e., they are not as steep as they should be; see
Figure 3.3. To put this another way, upwinding seems to produce an accurate
solution for a different problem where the diffusion coefficient is much greater
than ε. We now make this visual observation more precise.

The simple upwinding discretization of (−εu′′ + au′ + bu)(xi) is

−ε

h2
(uNi+1 − 2uNi + uNi−1) +

ai
h
(uNi − uNi−1) + biu

N
i

= −
(
ε+

hai
2

)
1

h2
(uNi+1 − 2uNi + uNi−1) +

ai
2h

(uNi+1 − uNi−1) + biu
N
i .
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That is, upwinding applied to the original differential equation Lu = f
is exactly the same method as standard central differencing applied to the
modified differential equation L̃u := −(ε+ ha/2)u′′ + au′ + bu = f .

The diffusion coefficient in this modified differential equation is so large
(relative to ε) that central differencing produces an M-matrix and yields an

approximation of the true solution of L̃u = f , but of course near x = 1 this
solution is not close to the solution of Lu = f .

The amount ha(x)/2 by which the diffusion coefficient was apparently
increased by upwinding is called the artificial diffusion introduced by up-
winding.

This relationship between simple upwinding, Lu = f and L̃u = f opens
the door to a flood of possibilities: one can choose a certain amount of ar-
tificial diffusion to add to the problem Lu = f , then apply a standard (i.e.,
not designed for convection-diffusion) numerical method, with the aim of
retaining stability (i.e., excluding oscillations) while minimizing the smear-
ing of layers in the computed solution. Pursuing this approach turns out to
be quite fruitful; in fact, stable numerical methods on uniform meshes for
convection-diffusion ordinary differential equations are usually equivalent to
modifying the diffusion in the original differential equation then applying
a standard method such as central differencing—but for partial differential
equations, the connection may be less straightforward.

Exercise 3.17. Samarskĭı’s difference scheme (see [KT78]) for (3.1) is

−ε

h2[1 + ri]
(uNi+1 − 2uNi + uNi−1) +

ai
h
(uNi − uNi−1) + biu

N
i = fN

i ,

where ri := hai/(2ε). Here simple upwinding is used for the convection
term. Because, as we now know, this discretisation of the convection term
adds too much artificial diffusion, Samarskĭı’s method counters this excess
by decreasing the diffusion coefficient in the differential equation.

Show that Samarskĭı’s scheme can be generated by adding εr2i /(1 + ri)
artificial diffusion to (3.1) then applying central differencing.

If hai � ε, then ri is large, and the added artificial diffusion is approx-
imately εri = hai/2, so Samarskĭı’s scheme is close to simple upwinding,
while if hai � ε, then ri ≈ 0, so the added artificial diffusion is approxi-
mately zero and the scheme resembles standard central differencing. Thus
Samarskĭı’s scheme is a form of upwinding that interpolates between these
two extreme cases. This construction is reasonable; see Example 3.22. A
precise convergence result for the scheme is proved in [KT78, Theorem 4.2].

To summarize what we have learned about artificial diffusion: a numer-
ical method specially designed for a convection-diffusion problem is usually
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56 3. Finite Difference Methods in One Dimension

equivalent to modifying the problem by adding artificial diffusion then ap-
plying a standard numerical method. If too little artificial diffusion is added,
then the computed solution is often oscillatory, while if too much diffusion
is added, then the computed layers are smeared.

Can one add just the right amount of artificial diffusion to (3.1) so that,
when central differencing is then applied, one obtains a stable computed so-
lution that does not smear the boundary layer? We will answer this question
in the next section.

3.3. Uniformly convergent schemes

We now consider difference schemes on an equidistant mesh that are accurate
both outside and inside the boundary layer. A difference scheme on an
arbitrary mesh of N + 1 points is said to be robust or uniformly convergent
(with respect to ε) of order β > 0 in the discrete L∞ norm if there exist
constants ε0 and N0, which are independent of each other, such that the
solution {uNi } of the scheme satisfies

|ui − uNi | ≤ CN−β for 0 < ε ≤ ε0, N ≥ N0 and i = 0, . . . , N.

Here β is some positive constant that is independent both of the mesh and
of ε. We remind the reader that a constant denoted by C is also independent
both of ε and the mesh.

A uniformly convergent scheme (on an equidistant mesh) must address
explicitly the exponential nature of the layer part of the solution u, as the
next result shows.

Theorem 3.18 (Two necessary conditions for uniform convergence on an
equidistant mesh). Assume that we have an equidistant mesh of diameter
h = 1/N for some positive integer N . Suppose that a difference scheme for
the problem −εu′′ + au′ = f, u(0) = g0, u(1) = g1, where a is a positive
constant, can be written in the form

θ−u
N
i−1 + θ0u

N
i + θ+u

N
i+1 = hfi for i = 1, . . . , N − 1,(3.15a)

uN0 = g0, uNN = g1,(3.15b)

where each θ = θ(h, ε) depends only on the ratio h/ε. If the scheme is
uniformly convergent for some β > 0, then one must have

(3.16) θ− + θ0 + θ+ = 0 and e−ah/εθ− + θ0 + eah/εθ+ = 0.

Proof. The idea of the proof is to use uniform convergence to replace the
uNj in (3.15) by uj , then investigate what happens as h → 0 while holding
ε = h, so each θ remains constant.
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The hypotheses of the theorem imply that in particular the scheme is
uniformly convergent for the problem

(3.17) −εu′′ + au′ = 0, u(0) = 1, u(1) = 0,

where a is a positive constant, whose solution is

(3.18) u(x) = 1− e−a(1−x)/ε − e−a/ε

1− e−a/ε
for x ∈ [0, 1].

Let j be a fixed positive integer. Set i = N − j, so N − i is fixed. Then
taking a limit in (3.15) applied to (3.17), we get

0 = lim
ε=h→0

[
θ−u

N
i−1 + θ0u

N
i + θ+u

N
i+1

]
= lim

ε=h→0
[θ−ui−1 + θ0ui + θ+ui+1]

because |ui−uNi | ≤ Ch for all i and the θ coefficients do not change in value
as we take the limit. Hence, substituting from (3.18), one has

0 = lim
ε=h→0

{
(θ− + θ0 + θ+)

− 1

1− e−a/ε

[
θ−e

−a(1−xi−1)/ε+θ0e
−a(1−xi)/ε+θ+e

−a(1−xi+1)/ε
]

+
e−a/ε

1− e−a/ε
(θ−+θ0+θ+)

}
= θ− + θ0 + θ+ − lim

ε=h→0
e−a(1−xi)/ε

[
θ−e

−ah/ε + θ0 + θ+e
ah/ε

]
= θ− + θ0 + θ+ − e−a(1−xi)/ε

[
θ−e

−ah/ε + θ0 + θ+e
ah/ε

]
,

since limε=h→0 e
−a/ε = 0 and e−a(1−xi)/ε = e−a(N−i)h/ε does not change in

value as we take the limit. But in this equation, N − i is any fixed positive
integer, so e−a(1−xi)/ε can take more than one value. We conclude that
θ− + θ0 + θ+ = 0 and θ−e−ah/ε + θ0 + θ+e

ah/ε = 0. �

See [Sty03a] for a generalization of Theorem 3.18.

The hypothesis of Theorem 3.18, that each θ in (3.15a) depends only on
the ratio h/ε, is not restrictive; experience shows that almost all difference
schemes for the problem stated in Theorem 3.18 enjoy this property. The
first condition in (3.16) is satisfied by all plausible difference schemes (it
says merely that the scheme is uniformly convergent when the true solution
is a constant; see the proof of Theorem 3.18). It is the second condition
of (3.16) that distinguishes uniformly convergent schemes. For example,
simple upwinding, central differencing, and Samarskĭı’s difference scheme
(Exercise 3.17) all fail to satisfy it.

Exercise 3.19. Show that simple upwinding, central differencing, and the
difference scheme of Samarskĭı (Exercise 3.17) all satisfy the hypothesis of
Theorem 3.18 that each θ in (3.15a) depends only on the ratio h/ε.
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Exercise 3.20. Theorem 3.18 gives necessary conditions for uniform con-
vergence for three-point schemes. Obtain an analogous result for n-point
finite difference schemes with n ≥ 3.

Exercise 3.21. Theorem 3.18 gives necessary conditions for uniform con-
vergence for three-point schemes. Show by a very short argument that these
conditions are not sufficient conditions for uniform convergence for three-
point schemes.

Example 3.22. On equidistant meshes, the best known uniformly conver-
gent scheme for (3.1) is the Il ′in–Allen–Southwell difference scheme. Allen
and Southwell [AS55] proposed it without any analysis of its behaviour,
then it was independently rediscovered by Il′in [Il′69], who gave a compli-
cated proof of its convergence. The scheme is

(3.19) 2− aie
ρi

h(eρi − 1)
uNi−1 +

[
ai(e

ρi + 1)

h(eρi − 1)
+ bi

]
uNi − ai

h(eρi − 1)
uNi+1 = fi

for i = 1, . . . , N−1, where ρi = hai/ε, with uN0 = uNN = 0. It computes {ui}
exactly in the special case where a and f are constants and b ≡ 0. This
scheme can be generated in a wide variety of ways [Roo94]. In [KT78]
discrete barrier functions were introduced for the first time in the convection-
diffusion literature to show that the solution {uNi } computed by the scheme
is first-order uniformly convergent: |ui − uNi | ≤ CN−1 for all i.

When hai � ε, the scheme is close to simple upwinding, while if hai � ε,
the scheme resembles central differencing.

Exercise 3.23. Consider the differential equation −εu′′ + au′ = f , with a
and f constant and u(0) = u(1) = 0. On an equidistant mesh of width
h = 1/N , suppose that the three-point difference scheme (3.15) is required
to compute u exactly at each mesh point. Determine the conditions that
the coefficients θ−, θ0, and θ+ of (3.15) must satisfy; solve these conditions
for θ−, θ0, and θ+, and observe that you get (3.19).

Exercise 3.24. Show that the Il′in–Allen–Southwell scheme can be gener-
ated by applying central differencing to the modified differential equation

−ε

(
ha(x)

2ε
coth

ha(x)

2ε

)
u′′(x) + a(x)u′(x) + b(x)u(x) = f(x).

Show that [ha(x)/(2ε)] coth[ha(x)/(2ε)] > 1. This indicates that artificial
diffusion (see section 3.2) has been added to the original problem.

Exercise 3.25. Prove that the coefficient matrix associated with the Il′in–
Allen–Southwell scheme is an M-matrix. Hint. See the proof of Lemma 3.8.
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The more complicated El Mistikawy–Werle three-point scheme has the
form

r−i u
N
i−1 + r0i u

N
i + r+i u

N
i+1 = q−i fi−1 + q0i fi + q+i+1fi+1 for i = 1, . . . , N − 1.

It achieves second-order uniform convergence on equidistant meshes, i.e.,
maxi |ui− uNi | ≤ CN−2. See [RST08, Section I.2.1.3] for more information
about this scheme and the Il′in–Allen–Southwell scheme.

Numerical methods like these, whose coefficients involve exponential
functions of h/ε, are known collectively as exponentially fitted schemes. Ex-
ponential fitting is the mainstay of the FEM package PLTMG and is widely
used in semiconductor device modelling, where the Il′in–Allen–Southwell
scheme is known as the Scharfetter–Gummel scheme. A recent related idea
is the tailored finite point method [HH14], where local solutions of the dif-
ferential equation are used to generate finite difference schemes.

Exercise 3.26. Find a connection between the Il′in–Allen–Southwell scheme
and the tailored finite point method of [HH14].

Remark 3.27. For the reaction-diffusion problems considered in Remarks
2.37 and 2.50, the standard three-point discretisation of u′′ on an equidistant
mesh produces a difference scheme whose matrix has ith row given by (3.2)
with a ≡ 0. This is easily verified to be an M-matrix using Lemma 3.5
(we leave this as an exercise), so its computed solutions are stable. Never-
theless, the method is not uniformly convergent because one can prove an
analogue of Theorem 3.18 showing that only schemes whose coefficients have
a certain exponential property can be uniformly convergent. An exponen-
tially fitted uniformly convergent scheme for reaction-diffusion problems is
analysed in [OS86].

Exercise 3.28. Prove an analogue of Theorem 3.18 for reaction-diffusion
problems.

3.4. Shishkin meshes

When solving numerically a convection-diffusion problem, it seems reason-
able to cluster mesh points in the layer—where the solution u(x) is most
troublesome—instead of spreading them equidistantly over [0,1]. This ap-
proach is an alternative to the exponential fitting on equidistant meshes that
was discussed in section 3.3.

Graded meshes, where the mesh width gets finer and finer as one moves
closer and closer to x = 1, have been advocated by several authors; see
[Lin10,Roo12] and [RST08, Section I.2.4.1] for references. A well-known
example of this class is the Bakhvalov mesh, which is discussed at some
length in [Lin10]. But convergence analyses on graded meshes can be very
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delicate, so we shall concentrate here on a simpler piecewise-equidistant
mesh that is originally due to Shishkin and which has been used by many
researchers. The books by Shishkin et al. [FHM+00,MOS12,SS09] are
devoted entirely to the use and analysis of this mesh. See [KO10,Lin10,
Roo12,RST08] for references to singularly perturbed problems where the
Shishkin mesh has been used.

Consider the convection-diffusion problem (3.1). For a full analysis that
is valid for all values of ε and N , set σ = min{1/2, (2/α)ε lnN}. In our
exposition we shall assume that σ = (2/α)ε lnN , as σ = 1/2 occurs only
when N is exponentially large relative to ε, which is rare in practice. Then
the mesh transition point—which separates the fine and coarse portions of
the Shishkin mesh—is defined to be 1−σ; typically it lies close to 1. Let N
be an even integer. Divide each of [0, 1− σ] and [1− σ, 1] by an equidistant
mesh with N/2 subintervals; see Figure 3.5.

Figure 3.5. Shishkin mesh for convection-diffusion with N = 16

The coarse part of this Shishkin mesh has spacing H := 2(1− σ)/N , so
N−1 ≤ H ≤ 2N−1. The fine part has spacing h := 2σ/N = (4/α)εN−1 lnN ,
so h � ε. On the mesh, xi = iH for i = 0, . . . , N/2 and xi = 1 − (N − i)h
for i = N/2 + 1, . . . , N . Set hi = xi − xi−1 for each i.

Remark 3.29. Nonequidistant meshes for convection-diffusion problems
are sometimes described as “layer-resolving” meshes. One might presume
that this terminology means that wherever the derivatives of u(x) are large,
the mesh is fine. But the Shishkin mesh does not fully resolve the layer: for
|u′(x)| ≈ C[1 + ε−1 exp(−α(1− x)/ε)] by Theorem 2.27, so

|u′(1− σ)| ≈ C[1 + ε−1 exp(−2 lnN)] = C[1 + ε−1N−2],

which can be large since typically ε � N−1. Thus |u′(x)| is still large on
part of the last coarse-mesh interval [xN/2−1, xN/2].

This large derivative is not an error in the design of the mesh! Shishkin’s
key insight was that one could achieve satisfactory theoretical and numerical
results without resolving all of the layer. If one sets out to construct a two-
stage piecewise-equidistant mesh as we have done, but with the additional
requirement that the mesh be fine enough to control the local truncation
error wherever |u′(x)| is very large (i.e., one resolves all of the layer), then
the number of mesh points required will have to grow like ln(1/ε) as ε gets
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smaller; see [RST08, Remark I.2.85]. Shishkin’s construction and analysis
enables us to work with a fixed number (N + 1) of mesh points that does
not increase even if ε is very small.

Remark 3.30. The bound |u′(x)| ≤ C[1 + ε−1 exp(−α(1− x)/ε)] of Theo-
rem 2.27 implies that |u′(x)| ≤ C for 0 ≤ x ≤ 1− (1/α)ε ln(1/ε). This prop-
erty is often expressed as “the width of the boundary layer is O (ε ln(1/ε))”.

Exercise 3.31. For 0 ≤ x ≤ 1 − σ − H (i.e., on the coarse mesh region
excluding the rightmost interval [1 − σ − H, 1 − σ]), use Theorem 2.27 to

prove that |u(i)(x)| ≤ C for i = 0, 1, 2 and some constant C. How should
you choose σ to get the same result for i = 0, 1, 2, . . . , q?

We now analyse simple upwinding on the Shishkin mesh. For each mesh
function {vi}Ni=0, set D−vi = (vi − vi−1)/hi and

δ2vi =
2

hi + hi+1
(D−vi+1 −D−vi) ;

this is a standard discretization of v′′(xi) on a nonequidistant mesh. Our
difference scheme is

−εδ2uNi + aiD−u
N
i + biu

N
i = fi for i = 1, . . . , N − 1,(3.20a)

uN0 = uNN = 0.(3.20b)

It is straightforward to check (cf. Lemma 3.8) that the matrix LN associated
with (3.20) is an M-matrix. To investigate the convergence of the method,
recall the Shishkin decomposition u = S +E of Theorem 2.48 and split the
discrete solution {uNi } in an analogous manner: define {SN

i } and {EN
i } by

LNSN
i = (LS)i = fi for i = 1, . . . , N − 1, SN

0 = S(0), SN
N = S(1),

LNEN
i = (LE)i = 0 for i = 1, . . . , N − 1, EN

0 = E(0), EN
N = E(1).

Then uNi = SN
i + EN

i for all i, and

(3.21) |ui − uNi | = |(S + E)i − (SN
i +EN

i )| ≤ |Si − SN
i |+ |Ei − EN

i |.

We shall bound each right-hand side term separately.

Lemma 3.32. There exists a constant C0 such that

|Si − SN
i | ≤ C0N

−1 for i = 0, . . . , N.
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Proof. As the derivatives of S are bounded, a standard consistency error
analysis shows that

|LN (Si − SN
i )| = |LNSi − (LS)i|

≤ 2ε

∫ xi+1

xi−1

|S′′′(x)| dx+ ai

∫ xi

xi−1

|S′′(x)| dx(3.22)

≤ C(xi+1 − xi−1) ≤ CN−1

for i = 1, . . . , N − 1. Set wi = C0N
−1xi for all i, where the positive

constant C0 will be chosen so that {wN
i } is a discrete barrier function for

{Si − SN
i }. Now

LNwi = aiC0N
−1 + biwi > αC0N

−1 ≥ |LNSi − (LS)i|

by (3.22), provided that C0 is a sufficiently large constant. Clearly, w0 =
0 = |S0 − S0

0 | and wN = C0N
−1 ≥ 0 = |SN − SN

N |. Thus Lemma 3.7 can be
applied, and we get |Si − SN

i | ≤ wi ≤ C0N
−1 for all i, as desired. �

To bound |Ei −EN
i | one appeals again to Lemma 3.7, but the approach

cannot be as direct as Lemma 3.32 because E(x) has large derivatives on part
of the coarse mesh (see Remark 3.29). Instead, we show first by two separate
calculations that |Ei| and |EN

i | are small on [0, 1 − σ] because they decay
rapidly away from x = 1, so |Ei − EN

i | is small on [0, 1 − σ]. In particular
this implies that |Ei − EN

i | is small when i = N/2 (i.e., at the transition
point 1− σ). Then on [1− σ, 1] the mesh is so fine that it compensates for
the large derivatives of u and, consequently, |Ei−EN

i | can be bounded by a
consistency error analysis like that of Lemma 3.32 using the previous bound
on |EN/2 − EN

N/2|.
Note that each of these “consistency and barrier functions imply conver-

gence” arguments is a manifestation of the “consistency and stability imply
convergence” principle that is standard in finite difference analyses.

From (2.33) and the definition of the transition point 1− σ,

(3.23) |Ei| ≤ Ce−α(1−(1−σ))/ε = CN−2 ≤ CN−1 for i = 0, . . . , N/2.

In the next lemma a discrete barrier function is used to show that |EN
i |

is small when i ≤ N/2, like |Ei|. Set

Zi =
i∏

j=1

(
1 +

αhj
2ε

)
for i = 0, . . . , N,

with the standard convention that when i = 0, this product is equal to 1.

Exercise 3.33. Show that Zi ≤ exp (αxi/(2ε)) for i = 0, 1, , . . . , N .
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Lemma 3.34. There exists a constant C such that

|EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. For i = 1, . . . , N , a calculation shows that there exists a constant
C1 > 0 such that

(3.24) LNZi ≥
C1

max{ε, hi}
Zi.

Now et ≥ 1 + t for all t ≥ 0, so

(3.25)
Zi

ZN
=

N∏
j=i+1

(
1 +

αhj
2ε

)−1

≥
N∏

j=i+1

e−αhj/(2ε) = e−α(1−xi)/(2ε).

Set Yi = C2Zi/ZN for i = 0, . . . , N . Then LNYi = (C2/ZN )LNZi ≥ 0 =
|LNEN

i | for i = 1, . . . , N − 1, by (3.24) and the definition of {EN
i }. Also

YN = C2 ≥ |E(1)| = |EN
N | if the constant C2 is chosen sufficiently large, by

the bound on |E(x)| given by inequality (2.33). Finally, (3.25) implies that

Y0 =
C2Z0

ZN
≥ C2e

−α/(2ε) ≥ C2e
−α/ε ≥ |E(0)| = |EN

0 |,

provided that the constant C2 is chosen sufficiently large, where we appealed
again to (2.33). Thus we can choose C2 so that the conditions of Lemma
3.7 are satisfied (i.e., {Yi} is a discrete barrier function for {EN

i }), and it
follows that

(3.26) |EN
i | ≤ Yi =

C2Zi

ZN
for all i.

But for i = 0, . . . , N/2,

Zi

ZN
≤

ZN/2

ZN
=

N∏
j=1+N/2

(
1 +

αh

2ε

)−1

=
(
1 + 2N−1 lnN

)−N/2

≤ N−1e(lnN)2/N ≤ CN−1

for some constant C (to prove the penultimate inequality, see Exercise 3.36).
Combining this inequality with (3.26), the proof is complete. �

Exercise 3.35. Prove inequality (3.24).

Exercise 3.36. Prove the inequality
(
1 + 2N−1 lnN

)−N/2 ≤ N−1e(lnN)2/N

by first proving that ln(1 + t) ≥ t− t2/2 for t ≥ 0.

Corollary 3.37. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. This is immediate from (3.23) and Lemma 3.34. �
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It remains only to bound |Ei − EN
i | for i > N/2, i.e., on the fine mesh.

Lemma 3.38. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 lnN for i = N/2 + 1, . . . , N.

Proof. We shall apply a discrete barrier function argument at the nodes
{xi}Ni=N/2 by considering the discretization of a two-point boundary value

problem on the interval [1−σ, 1]. Observe that when LN is restricted to the
interior nodes of this interval, it still yields an M-matrix.

Recalling the bounds on |E(j)(x)| in (2.33), a standard consistency error
analysis shows that for i = N/2 + 1, . . . , N − 1,

|LN (Ei − EN
i )| = |LNEi − (LE)i|

≤ 2ε

∫ xi+1

xi−1

|E′′′(x)| dx+ ai

∫ xi

xi−1

|E′′(x)| dx

≤ C

∫ xi+1

xi−1

ε−2e−α(1−x)/ε dx

= Cε−1e−α(1−xi)/ε sinh(αh/ε)

≤ Cε−1N−1(lnN)e−α(1−xi)/ε,

since sinh(αh/ε) = sinh(4N−1 lnN) ≤ CN−1 lnN for all N ≥ 2.

Set φi = C3N
−1(lnN)(1 + Zi/ZN ) for i = N/2, . . . , N , where the con-

stant C3 will be chosen later. By (3.24) and (3.25),

LNφi ≥ C3N
−1(lnN)(LNZi)/ZN

≥ C3C1ε
−1N−1(lnN)Zi/ZN

≥ C3C1ε
−1N−1(lnN)e−α(1−xi)/(2ε)

for i = N/2 + 1, . . . , N . Consequently, LNφi ≥ |LN (Ei − EN
i )| if the con-

stant C3 is sufficiently large. Furthermore, we can choose C3 such that

φN/2 = C3N
−1(lnN)(1 + ZN/2/ZN ) ≥ C3N

−1(lnN) ≥ |EN/2 − EN
N/2|

by Corollary 3.37, and φN = 2C3N
−1(lnN) > 0 = |EN −EN

N |.
Thus {φi} is a discrete barrier function for {Ei − EN

i }, and Lemma 3.7
now implies that for i = N/2, . . . , N , we have |Ei−EN

i | ≤ φi ≤ 2C3N
−1 lnN .

�

The final convergence result can now be stated.

Theorem 3.39 (Uniform convergence of simple upwinding on a Shishkin
mesh). There exists a constant C such that the solution {uNi } of (3.20)
satisfies

|ui − uNi | ≤ CN−1 lnN for i = 0, . . . , N.
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Proof. Combine (3.21), Lemma 3.32, Corollary 3.37, and Lemma 3.38. �

Numerical results in [FHM+00] show that Theorem 3.39 is sharp.

Roos [Roo96] shows that the condition number of the discrete linear
system associated with (3.20) is O

(
ε−2N2(lnN)−2

)
, which is uncomfort-

ably large when ε is small, but that an easy preconditioning by diagonal
scaling (i.e., approximate equilibration) reduces this condition number to
O
(
N2(lnN)−1

)
. This approach is pursued further in [NSV18], where pre-

conditioning is used not only to improve the condition number of the matrix
but also to facilitate a new convergence analysis of the method that is closer
in spirit to classical finite difference analyses.

Remark 3.40. The precise choice of mesh transition point 1 − σ in the
Shishkin mesh is of both theoretical and computational interest. A careful
examination of the proof of Theorem 3.39 [FHM+00], or of the exact error
in a special case [KO10], reveals that σ should have the form (k/α)εφ(N),
where φ(N) → ∞ but N−1φ(N) → 0 as N → ∞, and k is some constant.
The simplest choice for φ(N) is lnN .

The choice k = 2 used in our definition of σ enters subtly the proof of
Lemma 3.34 during the final chain of inequalities that bound Zi/ZN . How
to choose k in an optimal way is discussed in [ST98]. It is shown there,
using an argument resembling our proof of Theorem 3.39, that for a variant
of simple upwinding one has

|ui − uNi | ≤ Cmax{N−k, kN−1 lnN} for i = 0, . . . , N.

The sharpness of this bound is confirmed by numerical experiments. Con-
sequently choosing k larger than 1 (i.e., placing the transition point a little
too far from x = 1) diminishes only slightly the numerical accuracy of the
method, but choosing k smaller than 1 (i.e., placing the transition point a
little too close to x = 1) causes a noticeable deterioration in the numerical
rate of convergence.

Remark 3.41. In [AK96] it is shown that for central differencing on a
Shishin mesh, the computed solution {uNi } satisfies |ui−uNi | ≤ CN−2(lnN)2

for all i. The proof requires some ingenuity as the associated matrix is not
an M-matrix (on the coarse part of the mesh, its sign pattern is incorrect)
and the scheme does not satisfy a discrete maximum principle. In [Len00]
an alternative analysis of this method is presented that neatly side-steps
this obstacle by considering only alternate mesh points, since this will yield
a nonoscillatory computed solution—even on an equidistant mesh (consider
Figure 3.1). But numerical experience [LS01b] with analogues of central
differencing for two-dimensional problems reveals that it is quite expensive
to solve the discrete linear system efficiently, so we shall not pursue this
method further.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



66 3. Finite Difference Methods in One Dimension

Exercise 3.42. Consider (3.20) and the Shishkin mesh of Theorem 3.39.
Suppose we use central differencing at the mesh points xi for i = N/2 +
1, . . . , N − 1 (i.e., where the mesh is fine) and upwinding at xi for i =
1, 2, . . . , N/2. Show that the matrix associated with this hybrid difference
scheme is an M-matrix. Sharpen certain estimates in the proof of Theorem
3.39 to get the improved error bound |ui − uNi | ≤ CN−1 for i = 0, . . . , N .
(This exercise is based on [LS99].)

Remark 3.43. Error estimates in various norms for numerical methods
on Shishkin meshes usually include a multiplicative factor (lnN)β for some
β > 0. This factor is unimportant relative to the main convergence factor
N−k with k > 0, but it does increase the magnitude of the actual errors.
If one works with certain graded meshes (e.g., Bakhvalov meshes), then the
lnN factor disappears, so these meshes yield a higher rate of convergence but
they are more complicated to construct and analyse. See [KLS08,Lin10,
RST08] for more information about these meshes.

The result of Theorem 3.39 can be extended to more general forms of up-
winding and to other nonequidistant layer-adapted meshes that are designed
for convection-diffusion problems. For excellent surveys of such generaliza-
tions for problems in one and two dimensions, see [Lin03,Lin10].

Remark 3.44. A typical solution of the reaction-diffusion problem consid-
ered in Remarks 2.37, 2.50, and 3.27 has boundary layers at x = 0 and x = 1,
and Remark 2.50 gives us precise information about the nature of these lay-
ers. Hence, the mesh displayed in Figure 3.6, where σ0 = σ1 = (2/β)

√
ε lnN ,

is a suitable Shishkin mesh for this problem. As in the convection-diffusion

Figure 3.6. Shishkin mesh for reaction-diffusion with N = 16

problem, we place half of the N mesh intervals in the coarse mesh; the re-
maining N/2 mesh intervals are divided equally between the two boundary
layers.

Analogously to Theorem 3.39, the solution {uNi } computed by the stan-
dard three-point difference scheme obtained on this mesh (set a ≡ 0 in (3.20))
satisfies

|ui − uNi | ≤ C(N−1 lnN)2 for i = 0, 1, . . . , N ;

see [MOS12, Chapter 6]. Note that this is almost second-order convergence,
while Theorem 3.39 gives only almost first-order convergence for the more
difficult convection-diffusion problem.
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In this chapter we have studied finite difference methods for convection-
diffusion problems because they require less background preparation than
finite element methods. For two-point boundary value problems, finite dif-
ferences are just as powerful an approach as finite elements. Perhaps the
same is true in two and three dimensions if the domains are rectangular with
sides parallel to the coordinate axes. But for problems posed on general two-
or three-dimensional domains, finite elements can offer more flexibility; thus
in the latter half of the book we shall switch our main focus from finite
differences to finite element methods.
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Chapter 4

Convection-Diffusion
Problems in Two
Dimensions

In two dimensions the convection-diffusion equation takes the form

(4.1a) Lu(x, y) := −εΔu(x, y)+a(x, y) ·∇u(x, y)+ b(x, y)u(x, y) = f(x, y)

on Ω ⊂ R2, with

(4.1b) u(x, y) = g(x, y) on ∂Ω,

where 0 < ε ≤ 1, and the functions a, b, and f are assumed to be Hölder
continuous on Ω̄, the closure of Ω. We also assume that b ≥ 0 on Ω̄. Here Ω
is any bounded domain in R2 with a piecewise Lipschitz-continuous bound-
ary ∂Ω (e.g., a rectangle or a domain with differentiable boundary). Assume
that g is continuous on ∂Ω except perhaps for a jump discontinuity at a finite
number of points. The differential operator L is elliptic, and by Lemma 1.8
it satisfies a maximum principle, so (4.1) has a unique solution in C2(Ω);
see for example [GT01].

4.1. General description

Assume that ε � 1 and |a| ≈ 1 in (4.1a), so that convection dominates
diffusion. In the problems that we consider, the solution u(x, y) of (4.1) has
an asymptotic structure similar to that for one-dimensional problems. That
is, analogously to the case k = 0 in (2.8), one can write u(x, y) as the sum
of the solution to a first-order PDE, plus layer(s), plus an O (ε) term.

69
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Figure 4.1. Partition of ∂Ω

To make this more precise, divide the boundary ∂Ω into three parts:

inflow boundary ∂−Ω = {x ∈ ∂Ω : a · n < 0},(4.2a)

outflow boundary ∂+Ω = {x ∈ ∂Ω : a · n > 0},(4.2b)

characteristic/tangential flow boundary ∂0Ω = {x ∈ ∂Ω : a · n = 0},
(4.2c)

where n is the outward-pointing unit normal to ∂Ω; see Figure 4.1.

A typical solution u will have boundary layers—narrow regions close to
∂Ω where |∇u| is large—along ∂+Ω and ∂0Ω. As in one-dimensional prob-
lems, exceptional Dirichlet boundary conditions g can eliminate these layers;
recall Remark 2.2. Also, Neumann boundary conditions on some or all of
∂+Ω and ∂0Ω mean that layers are no longer visible there (cf. Remark 2.33).

On most of Ω, u is approximately equal to u0, the solution of the reduced
problem is

a(x, y) · ∇u0(x, y) + b(x, y)u0(x, y) = f(x, y) on Ω,(4.3a)

u0 = g on ∂−Ω.(4.3b)

This first-order problem is the two-dimensional analogue of (2.18). Write
a = (a1, a2). Following the standard theory of first-order PDEs, the char-
acteristic traces or characteristic curves or characteristics of (4.3) are the
parameterized curves (x(t), y(t)) in Ω defined by

(4.4) x′(t) = a1(x, y), y′(t) = a2(x, y),

with initial data (x(0), y(0)) = (x̂, ŷ), where (x̂, ŷ) is any point in ∂−Ω.
One such curve enters Ω from each point in ∂−Ω. The function u0(x, y)
propagates itself along these curves: on each characteristic, (4.3) simplifies
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(we leave this as an exercise!) to the ordinary differential equation

(4.5)
du0(t)

dt
+ bu0 = f

with initial data u0(0) = g(x̂, ŷ), where we have abused the notation by
writing u0 as a function of t along each characteristic. As in fluid dynamics,
the direction of propagation a is often called the flow ; this explains the
terminology of (4.2).

We shall refer to the characteristics of (4.3) as the subcharacteristics
of (4.1).

Exercise 4.1. Suppose that

−εΔu+ ux + xuy = 3 on Ω := (0, 1)× (0, 1),

with u = 1 on the inflow boundary ∂−Ω. Compute the subcharacteristics of
this convection-diffusion problem and, hence, show that the solution of the
associated reduced problem is

u0(x, y) =

⎧⎨
⎩
3x+ 1 if y ≥ x2/2,

3

(
x−

√
x2

2 − y + 1

)
if y < x2/2,

for all (x, y) ∈ Ω.

Just as in one dimension, boundary layers occur where there is a mis-
match between the reduced solution u0 and the boundary data. This can
happen only along ∂+Ω and ∂0Ω. While all layers look much the same when
plotted, there can nevertheless be significant analytical differences between
them.

Layers along ∂+Ω are called regular or exponential boundary layers.
Writing �n = (n1, n2) for the unit outward-pointing normal to ∂Ω, then
near ∂+Ω, exponential layers are essentially multiples of the function

(4.6) exp[−(a · n) d((x, y), ∂+Ω)/ε],

where d((x, y), ∂+Ω) denotes the distance from the point (x, y) to the out-
flow boundary. Thus in cross-section perpendicular to ∂+Ω these layers are
very similar to the boundary layers that we met in one dimension. Their
first-order derivatives in the direction perpendicular to the boundary have
magnitude O (1/ε), and the width of the layer (i.e., the distance one must
travel from the boundary before all first-order derivatives are bounded by
some constant C) is O (ε ln(1/ε)); recall Remark 3.30.

Layers along ∂0Ω are called parabolic or characteristic boundary layers.
In asymptotic expansions of u, these layers can be written as the solution
of a parabolic PDE but not as the solution to an ODE; thus they have a
much more complicated structure than exponential boundary layers. Their
first-order derivatives in the direction perpendicular to the boundary are
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72 4. Convection-Diffusion Problems in Two Dimensions

Figure 4.2. Exponential boundary layer and two characteristic bound-
ary layers

O (1/
√
ε)—not as large as for exponential layers, so characteristic layers are

less steep—but the width of the layer is O (
√
ε ln(1/ε)), so they are wider

than exponential layers.

We shall return to this comparison of the two types of layers in Exer-
cise 4.12.

Example 4.2. In Figure 4.2 we plot the solution u(x, y) to the problem

−εΔu(x, y) + ux(x, y) = 1 on Ω := (0, 1)× (0, 1), u(x, y) ≡ 0 on ∂Ω,

where ε = 0.001.

The inflow boundary ∂−Ω is the side x = 0 of Ω̄; the tangential flow
boundary comprises the sides y = 0 and y = 1; the outflow boundary is the
remaining side x = 1.

From (4.4) each subcharacteristic is parametrized by x′(t) = 1, y′(t) = 0,
so we can take x = t, and the subcharacteristics are the lines y = k for
arbitrary constant k. Then by (4.5) the reduced problem u0, written as a
function of the parameter t, satisfies u′0(t) = 1, with initial data u0(0) = 0.
Hence, u0(t) = t, i.e., u0(x, y) = x for all (x, y) ∈ Ω.
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On most of Ω one therefore has u(x, y) ≈ x. The side x = 1 of Ω̄ is
the outflow boundary ∂+Ω and an exponential layer appears there. The
tangential flow boundaries y = 0 and y = 1 have characteristic boundary
layers that grow in strength as x moves from 0 to 1 because (e.g., along
y = 0) |u0(x, 0) − u(x, 0)| = x is nonzero and increases as x increases.
Observe how the characteristic boundary layer along y = 0 is less steep but
wider than the exponential layer along x = 1.

To determine the asymptotic structure of the solution u inside these
layers, one uses stretched variables as in section 2.1. Let us consider first
the exponential outflow layer along the side x = 1: define the stretched
variable ξ = (1−x)/εp, where p is a constant to be determined, and rewrite
the differential operator in terms of ũ(ξ, y) := u(x, y), obtaining

(4.7) −ε1−2pũξξ − εũyy − ε−pũξ = 0,

where, as in section 2.1, we replace the right-hand side by zero. To de-
termine the boundary layer function from (4.7), we need an operator that
is independent of ε when ε is near zero and will yield a solution v(ξ, y)
of (4.7) that decays to zero as ξ → ∞ (i.e., as one moves away from x = 1).
A consideration of different values of p in (4.7) shows that the only value
that yields the correct behaviour of v is p = 1, for which (4.7) becomes
−ε−1vξξ − εvyy − ε−1vξ = 0. Letting ε → 0, this gives vξξ + vξ = 0, with

solution v(ξ, y) = v(ξ, 0)e−ξ. That is, the layer function at the side x = 1 is

v(x, y) = −u0(1, y)e
−(1−x)/ε, as v(ξ, 0) = −u0(1, y) so that v + u0 = 0 (the

given boundary value of u) along x = 1.

Next, consider the boundary layer along y = 0. Define the stretched
variable η = y/εq, where q is a constant to be determined. Changing vari-
ables from (x, y) to (x, η), the differential equation for the boundary layer
function w(x, η) is

−εwxx − ε1−2qwηη − wx = 0.

For ε near zero, only one choice of q yields the desired decay behaviour in w
as η → ∞: take q = 1/2 and w then satisfies −wηη − wx = 0. This is a
parabolic partial differential equation—the heat equation—with initial value
w(x, 0) chosen to be −u0(x, 0) so that u0 + w satisfies the given boundary
condition u = 0 along y = 0. Its solution is (see, e.g., [Eva10, Section 2.3])

(4.8) w (x, η) = −
√

2

π

∫ ∞

s=η/
√
2x

e−s2/2 u0

(
x− η2

2s2
, 0

)
ds.

The layer along y = 1 is of course similar to the layer along y = 0. This
example is also discussed in [RST08, Example III.1.16].

Assuming that w represents all the characteristic layer along y = 0,
Exercise 4.3 shows that inside the layer the first-order derivative parallel to
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74 4. Convection-Diffusion Problems in Two Dimensions

the boundary is bounded, but the first-order derivative perpendicular to the
boundary is O(1/

√
ε).

Exercise 4.3. Use formula (4.8) to show that

∂w(x, y)

∂y
=

√
2

π

∫ ∞

s=y/
√
2εx

y

εs2
e−s2/2 ds for (x, y) ∈ (0, 1)2.

Deduce that

∣∣∣∣∂v0(x, y)∂y

∣∣∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩
C
√
x√
ε

if y ≤
√
2εx,

C
√
x√
ε

e−y2/(8εx) if y >
√
2εx.

Show likewise that |∂v0(x, y)/∂x| ≤ C for all (x, y) ∈ (0, 1)2.

Exercise 4.4. Let Ω := (0, 1)× (0, 1). Consider the problem

−εΔu(x, y) + yβ1(1− y)β2ux(x, y) = yβ1(1− y)β2f(x, y) on Ω,

u(x, y) = 0 on ∂Ω,

where the constants β1 and β2 are nonnegative and the function f is smooth
and bounded. Show that the solution of the reduced problem does not
necessarily agree with the boundary condition u = 0 on the sides x = 1 and
y = 0, 1 of Ω̄; consequently, we expect boundary layers along these sides
of Ω̄. To investigate the width of the layer along y = 0, define the stretched
variable η = y/εp, where p is a constant to be determined (cf. section 2.1),
and rewrite the differential equation in terms of (x, η). Show that this leads
to the choice p = 1/(2+β1). Show similarly that one should use the stretched

variable η′ = (1− y)/εp
′
with p′ = 1/(2+β2) along y = 1, and the stretched

variable ξ = (1 − x)/ε along x = 1. This exercise is based on an example
in [KO10].

It can happen that there is no characteristic boundary, so only exponen-
tial layers appear in the solution, as in the next example.

Example 4.5. In Figure 4.3 we plot the solution u(x, y) to the problem

−εΔu(x, y) + ux(x, y) + 2uy(x, y) = 4 on Ω := (0, 1)× (0, 1),

u(x, y) ≡ 0 on ∂Ω,

where ε = 0.001.

Here a = (1, 2) is never tangential to ∂Ω, so there are no characteristic
layers. There are exponential layers at the outflow boundaries x = 1 and
y = 1.
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Figure 4.3. Two exponential boundary layers

Problems like Example 4.5, where one does not have to deal with the
added complication of characteristic layers, have been a favourite in analyses
of numerical methods for convection-diffusion problems.

Exercise 4.6. Compute the reduced solution for Example 4.5 and check
that it agrees with Figure 4.3. Find the leading terms for the exponential
layers along x = 1 and y = 1 by imitating the analysis of Example 4.2, then
differentiate these terms to get bounds on the derivatives of the solution u
inside these layers.

As well as boundary layers, solutions of convection-diffusion problems in
two-dimensional domains can have interior layers if there is a discontinuity
in the boundary data on ∂−Ω. This phenomenon has no analogue in one-
dimensional problems. (The interior layers of Remark 2.42 have a different
structure.) From the theory of first-order PDEs, if g has a jump discon-
tinuity at a point (x̂, ŷ) ∈ ∂−Ω, then u0 will be discontinuous across the
subcharacteristic Γ(x̂, ŷ) that passes through (x̂, ŷ). Now first-order PDEs
preserve Dirichlet boundary data discontinuities but second-order elliptic
PDEs smooth out such discontinuities, so the solution u(x, y) of (4.1) will
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76 4. Convection-Diffusion Problems in Two Dimensions

be continuous across Γ(x̂, ŷ). At the same time, u must be close to u0 once
we are a small distance away from Γ(x̂, ŷ). Combining these facts, we deduce
that u has an interior layer along the subcharacteristic Γ(x̂, ŷ). Such layers
have an asymptotic structure similar to characteristic boundary layers; they
are often referred to as parabolic or characteristic interior layers.

Example 4.7. In Figure 4.4 we use the same differential operator as in
Example 4.2, with ε = 10−6. A jump discontinuity has been introduced in
the inflow boundary data:

g(0, y) =

{
0 for 0 ≤ y < 0.5,

1 for 0.5 < y ≤ 1.

Consequently, the reduced solution is

u0(x, y) =

{
x for 0 ≤ y < 0.5,

1 + x for 0.5 < y ≤ 1.

This gives rise to an interior layer along the subcharacteristic passing through
the discontinuity at (0.5, 0), that is, along the line y = 0.5. A homogeneous
Dirichlet boundary condition is assumed on the other three sides of the do-
main, so there are characteristic boundary layers along y = 0 and y = 1,
and an exponential outflow layer at x = 1.

Example 4.8. Consider the problem

Lu(x, y) := −εΔu(x, y) + ux(x, y) + 2uy(x, y) = 0 on Ω := (0, 1)× (0, 1),

where the boundary condition is u(x, y) = g(x, y) with

g(x, y) =

{
0 when y = 0,
1 otherwise.

There is no tangential flow boundary. The inflow boundary ∂−Ω comprises
the sides x = 0 and y = 0 of Ω̄. In (4.5) the functions b and f are both zero,
so the reduced solution u0(x, y) is just the initial data on ∂−Ω propagated
along the subcharacteristics of L without change. These subcharacteristics
are the lines y = 2x+ k for arbitrary constant k.

The solution u(x, y) is as usual very close to u0 away from layers. The
outflow boundary ∂+Ω comprises the sides x = 1 and y = 1 of Ω̄. Along
the portion 0 ≤ x ≤ 1/2 of the side y = 1 there is no layer because u0 = g
there. There are exponential boundary layers along the rest of ∂+Ω. An
interior layer emanates across Ω from the discontinuity in g at the point
(0, 0), i.e., along the line y = 2x that is the subcharacteristic through (0, 0);
see Figure 4.5, where ε = 0.001.
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Figure 4.4. Interior layer

The interior layers in the above examples lie along straight lines because
in each case the convective coefficient a is constant. Any interior layer caused
by a discontinuity in the inflow boundary data will follow a, so if a is variable
then the interior layer will be curved; see for example [MS97, Figure 13].

Exercise 4.9. Modify the data on the inflow boundary in Exercise 4.1 as
follows: u = 1 on the side y = 0 of Ω, and u = 2 on the side x = 0.
Show that now the reduced solution u0 has a discontinuity along the curve
y = x2/2. Consequently, the solution u of the convection-diffusion problem
will exhibit an interior layer along this curve.

Asymptotic expansions of the solutions to several specific cases of (4.1)
are given in [Il′92].

4.2. A priori estimates

In this section we present various a priori results for the solution of (4.1).

Many analyses in the literature assume the condition

(4.9) a(x, y) =
(
a1(x, y), a2(x, y)

)
> (α1, α2) > (0, 0) on Ω,
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Figure 4.5. Solution of Example 4.8

which in the case where Ω is the unit square (0, 1)2 ensures that no charac-
teristic boundary layers are present.

Lemma 4.10. Assume that (4.9) holds true. Then

(i) There exists a constant C, which depends on the domain Ω, such
that

(4.10) ‖u‖L∞(Ω) ≤ ‖g‖L∞(∂Ω) +
C‖f‖L∞(Ω)

max{α1, α2}
.

If Ω is the unit square (0, 1)2, then C = 1.

(ii) For each δ > 0, define Ωδ = {x ∈ Ω : dist(x, ∂+Ω ∪ ∂0Ω) > δ}.
Let g ∈ C(∂Ω). Then there exists a constant C = C(δ) such that
|u(x, y)− u0(x, y)| ≤ Cε for all (x, y) ∈ Ωδ.

Proof. The proof of (i) is similar to the proof of Lemma 2.14.

The hypotheses of (ii) ensure that there are no interior layers. The proof
can be found in [GFL+83]. �

Lemma 4.10(ii) states precisely what we have seen in our figures: ex-
cluding layers, the solution u is very close to the reduced solution u0.

Exercise 4.11. Consider (4.1) on Ω = (0, 1)2. Assume that (4.9) holds true
and b ≥ 0 on Ω. Imitate the proof of Lemma 2.14 to show that |ux| ≤ C
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and |uy| ≤ C on the inflow boundary ∂−Ω of Ω. Thus no layers appear
along ∂−Ω.

Next we discuss the behaviour of derivatives of the solution u of (4.1).
Suppose that Ω is the unit square (0, 1)2 and the differential operator is as in
Example 4.8, so that (4.9) holds true. Then the sides x = 1 and y = 1 form
the outflow boundary ∂+Ω. Assuming that no extra complications such as
interior layers are present, near x = 1 one expects the solution u to satisfy
the bound

(4.11)

∣∣∣∣∂i+ju(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
(
1 + ε−ie−(1−x)/ε

)
,

while near y = 1 one expects

(4.12)

∣∣∣∣∂i+ju(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
(
1 + ε−je−2(1−y)/ε

)
.

Here the multipliers of 1 − x and 1− y correspond to the coefficients of ux
and uy, respectively, in the definition of Lu; (4.11) and (4.12) are analogues
of Exercise 2.22.

Close to the corner (1,1) there will be an outflow corner layer, which is
like a product of exponential boundary layers, and it satisfies the bound

(4.13)

∣∣∣∣∂i+ju(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
[
1 + ε−(i+j)e−(1−x)/εe−2(1−y)/ε

]
.

Despite the extra negative powers of ε in (4.13), corner layers of this type
rarely cause difficulty for numerical methods because they decay so rapidly
as one moves away from the corner.

A rigorous proof of bounds such as (4.11)–(4.13) is a delicate and lengthy
matter. For problems posed on the unit square (0, 1)2, with exponential
outflow layers along x = 1 and y = 1, it is shown in [LS01a] that one has
the decomposition u = S +E1 + E2 + E12, where∣∣∣∣∂i+jS(x, y)

∂xi∂yj

∣∣∣∣ ≤ C,(4.14a) ∣∣∣∣∂i+jE1(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
[
1 + ε−ie−α1(1−x)/ε

]
,(4.14b) ∣∣∣∣∂i+jE2(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
[
1 + ε−je−α2(1−y)/ε

]
,(4.14c) ∣∣∣∣∂i+jE12(x, y)

∂xi∂yj

∣∣∣∣ ≤ C
[
1 + ε−(i+j)e−α1(1−x)/εe−α2(1−y)/ε

]
,(4.14d)

for all (x, y) ∈ Ω̄ and 0 ≤ i + j ≤ 3. Here S is the smooth component
of u, E1 and E2 are exponential boundary layers, and E12 is a corner layer.
These bounds are obtained under the extra assumptions that the Dirichlet
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boundary condition g(x, y) is a continuous function and that a sufficient
number of compatibility conditions hold true at the corners of Ω̄. See also
the discussion in [KO10].

Corner compatibility conditions are relationships between the data of
the problem and the differential operator that ensure that derivatives of u
up to a desired order are continuous on the closed domain Ω̄. They arise
only at corners and are not caused by the singularly perturbed nature of
the problem. Grisvard [Gri85] provides a general exposition of compati-
bility conditions for elliptic operators on polygonal domains and Han and
Kellogg [HK90] write down the precise form that they take when applied
to convection-diffusion problems posed on the unit square.

If compatibility conditions beyond a certain order are not satisfied at
a corner of a domain, then certain derivatives of that order and higher
orders must blow up as one approaches this corner. Kellogg and Stynes
[KS05,KS07] consider a problem similar to Example 4.2:

(4.15) −εΔu+ a1ux + bu = f on Ω := (0, 1)2, u = g on ∂Ω

where a1 and b are positive constants. They decompose the solutions of
this problem into smooth and layer components; an exponential layer at
the outflow boundary x = 1, characteristic layers along the tangential flow
boundaries y = 0 and y = 1, and a corner layer at each corner. The bounds
in [KS05,KS07] are expressed in terms of the number of compatibility
conditions that are satisfied at each corner of Ω̄. Near x = 1, but away
from corners, one has (4.11). For the layer component w associated with
the characteristic boundary y = 1, one finds that

(4.16)

∣∣∣∣∂i+jw(x, y)

∂xi∂yj

∣∣∣∣ ≤ C(
√
ε )−je−k(1−y)/

√
ε

for a certain positive constant k, provided one stays away from corners. Near
the corners, singularities in the derivatives begin to appear; we do not give
the details here.

The data of Example 4.8 are not fully compatible at the corner (1,1) with
the differential operator L. This incompatibility will cause singularities in
the derivatives of u at (1,1). The interaction between these singularities and
the exponential and corner layers is not yet fully understood. That is, we
are currently unable to write down reliable sharp pointwise bounds on the
derivatives of u near the point (1,1), but one expects that sharp bounds are
at least as bad as (4.13) and will blow up as (x, y) approaches (1, 1).

Comparing the bounds (4.12) and (4.16), we see that derivatives in the
direction perpendicular to the boundary are larger inside exponential layers
than inside parabolic layers. This is apparent in Figure 4.2 for instance. But
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this figure also shows that on the other hand, characteristic layers are wider
than exponential layers. We now outline how to quantify this “wideness”.

Engineers working in fluid dynamics define boundary layer width or
boundary layer thickness to be the distance from the boundary at which
a boundary layer component has decreased to 1% of its magnitude at the
boundary. A numerical analyst might define the layer width/thickness to
be the distance from the boundary beyond which all the first m derivatives
of the boundary layer component (for some fixed positive integer m) are
bounded independently of ε.

Exercise 4.12. Using the above definitions, show that the boundary layer
width/thickness of

(i) an exponential layer component e−k(1−y)/ε is O(ε| ln ε|) for a nu-
merical analyst and O(ε) for an engineer;

(ii) a characteristic layer component is e−k(1−y)/
√
ε is O(

√
ε | ln ε|) for

a numerical analyst and O(
√
ε) for an engineer.

Here k is a positive constant. Quantities depending on 1% or m are hidden
inside the O(·) notation but all dependence on ε is explicit.

In this book we focus on boundary layers of width O(ε) and O(
√
ε)

(ignoring ln ε factors), but other widths are possible as Exercise 4.4 shows.

It is in general difficult to derive sharp bounds on derivatives of solutions
of convection-diffusion problems inside characteristic boundary and interior
layers. Although such bounds are of great interest to numerical analysts,
few rigorous results appear in the literature. As we described above, point-
wise bounds for characteristic boundary layers posed on the unit square are
proved in [KS05,KS07]. In another paper [KS06] the same authors con-
sider a convection-diffusion problem in a half-plane with a discontinuity in
an arbitrary specified derivative of the boundary data and derive pointwise
bounds on derivatives of the solution, including the behaviour along the
interior layer emanating from the point of discontinuity.

Exercise 4.13. For a problem posed on the unit square (0, 1)2 with a char-
acteristic layer along y = 0, one can sometimes prove (see, for example,
Exercise 4.3) that the layer component v of the solution satisfies∣∣∣∣∂v(x, y)∂y

∣∣∣∣ ≤ C√
ε
e−ky2/ε on (0, 1)2 for some positive constant k.

Show that this bound implies the slightly weaker but more tractable bound∣∣∣∣∂v(x, y)∂y

∣∣∣∣ ≤ C√
ε
e−ky/

√
ε on (0, 1)2.
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4.2.1. Sobolev norms. Let ‖ · ‖k and | · |k denote the usual norm and
seminorm on the Sobolev space Hk(Ω) for all nonnegative integers k. In
particular ‖ · ‖0 = ‖ · ‖L2(Ω).

The presence of layers in u means that one does not have ‖u‖k ≤ C for

any k ≥ 1. Even in one dimension, the Hk norm of the function e−α(1−x)/ε is
easily checked (see Exercise 2.31) to be O

(
ε−k+1/2

)
, and exponential layers

in two-dimensional problems have a similar magnitude. This observation
motivates the following definition of a weighted energy norm that is com-
monly used in finite element analyses of convection-diffusion problems: for
all w ∈ H1(Ω), set

‖w‖1,ε =
√
ε|w|21 + ‖w‖20.

See Section 6.1 for further discussion of this norm.

Lemma 4.14. Let u be the solution of (4.1). Assume that b− (diva)/2 ≥
C5 > 0 on Ω̄ for some constant C5. Assume also that Ω is convex or has
smooth boundary. Then there exists a constant C such that

ε3/2|u|2 + ε1/2|u|1 + ‖u‖0 ≤ ε3/2|u|2 +
√
2 ‖u‖1,ε ≤ C.

Proof. Let G be the solution of the problem ΔG = 0 on Ω, G = g on ∂Ω.
Then the hypotheses on the domain Ω ensure that ‖G‖2 ≤ C‖g‖0,∂Ω by a
classical inequality (see, e.g., [GT01]). Subtract G from u to reduce the
problem to the case of homogeneous Dirichlet boundary conditions: setting
ũ := u−G, we have ũ = 0 on ∂Ω and Lũ = f̃ on Ω, where f̃ := f + εΔG−
a · ∇G− bG.

Now use a standard energy norm argument: multiply Lũ = f̃ by ũ, then
integrate by parts, obtaining

ε|ũ|21 +
∫
Ω

(
b− 1

2
diva

)
ũ2 =

∫
Ω
f̃ ũ ≤ ‖f̃‖0‖ũ‖0 ≤

1

2C5
‖f̃‖20 +

C5

2
‖ũ‖20,

and ‖ũ‖1,ε ≤ C follows, where C = C(‖f̃‖0) = C(‖f‖0, ‖g‖0,∂Ω) because
‖G‖2 ≤ C‖g‖0,∂Ω. Then by a triangle inequality we get

(4.17) ‖u‖1,ε ≤ ‖ũ‖1,ε + ‖G‖1,ε ≤ C,

where C depends on ‖f‖0 and ‖g‖0,∂Ω.
The PDE (4.1) and (4.17) now yield

ε‖Δu‖0 ≤ C(|u|1 + ‖u‖0 + ‖f‖0) ≤ C(ε−1/2 + 1) ≤ Cε−1/2,

so ε3/2‖Δu‖0 ≤ C. But the classical inequality |u|2 ≤ C(‖Δu‖0 + ‖u‖0)
holds true [GT01], and we get ε3/2|u|2 ≤ C. �

Remark 4.15. Analogously to Remark 2.12, if (4.9) holds true then one
can assume without loss of generality that b− (diva)/2 ≥ C5 > 0 on Ω̄.
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Exercise 4.16. For all (x, y) ∈ (0, 1)2 and 0 ≤ i + j ≤ 1, suppose that
the function w satisfies the bound (4.16). Thus w represents a typical char-
acteristic boundary layer along y = 0. Compute ‖w‖1,ε and show that if
ε → 0, then ‖w‖1,ε → 0 also. This says that the standard energy norm is
unsuited to measuring the strength of characteristic boundary layers because
its ε-weighting is too strong—unlike the situation for exponential boundary
layers that is explored in Exercise 4.17.

Exercise 4.17. For Ω = (0, 1)2, compute ‖w‖1,ε for

(i) w(x, y) = w1(x, y) := e−α(1−x)/ε,

(ii) w(x, y) = w12(x, y) := e−α(1−x)/εe−β(1−y)/ε,

where α, β are positive constants. Show that ‖w1‖1,ε = O(1) as ε → 0; this
means that the norm ‖ · ‖1,ε is weighted correctly for exponential boundary
layers such as w1. Is it weighted correctly for the corner layer w12?

4.2.2. Some other observations. Dörfler [Dör99] gives bounds on u and
its derivatives in various norms (both isotropic and anisotropic) and for a
variety of convection-diffusion problems on bounded domains. Pointwise
bounds on derivatives of u for many variants of (4.1) are derived in [SS09]
but the arguments are sometimes presented in a very concise style.

The derivation of asymptotic expansions and bounds on derivatives of
solutions in two-dimensional domains can be difficult. In [Hem96] Hemker
considers the following model problem on the exterior of the unit disc:

−εΔu+ ux = 0 on R2 \D,

u(x, y) = 1 on ∂D,

u(x, y) → 0 as (x, y) → ∞,

where D := {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Here the flow and boundary condi-
tions generate a boundary layer that has a very complicated structure near
the points (0,±1) on ∂D. He derives an exact formula for the solution u
by writing it as an infinite series of modified Bessel functions, but this is
impractical for evaluating the solution accurately, so he goes on to examine
asymptotic expansions of the solution in various parts of R2 \ D. Subse-
quently, various numerical methods have been used in attempts to solve this
difficult problem accurately; see the webpage http://homepages.cwi.nl/

~pieth/webs/webs.html

Remark 4.18. Consider the reaction-diffusion problem

−εΔu+ bu = f on Ω := (0, 1)2, u = g on ∂Ω,

where b(x, y) ≥ 2β2 > 0 on Ω̄. Analogously to one-dimensional problems
of this type (see Remarks 2.37 and 2.50), the solution u exhibits typically
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a boundary layer on all four sides of Ω̄. Assuming some compatibility con-
ditions at the corners of the domain, Clavero et al. [CGO05] decompose

the solution as u = S +
∑4

i=1wi +
∑4

i=1 zi, where S is smooth, each wi is a
boundary layer associated with one side of Ω̄, and each zi is a corner layer
associated with one corner of Ω̄. For example, it is shown that the layer
component w1 associated with the side y = 1 satisfies

(4.18)

∣∣∣∣∂jw1(x, y)

∂yj

∣∣∣∣ ≤ C(
√
ε )−je−β(1−y)/

√
ε for j = 0, 1, . . . , 4.

This is a natural generalization of one-dimensional reaction-diffusion prob-
lems; each of these boundary layers is exponential. Andreev [And06] in-
vestigates what happens to these bounds when the corner compatibility
conditions are not satisfied.

Observe that the bound (4.18) is similar to the bound (4.16) for charac-
teristic boundary layers. This happens because in the problem (4.15), near
the boundary y = 1, the term a1ux is not large so the PDE behaves like
−εΔu + bu = f − a1ux with a bounded right-hand side, i.e., a reaction-
diffusion problem! Nevertheless one should not think that characteristic
boundary layers are the same as reaction-diffusion boundary layers, for char-
acteristic layers have a more complicated structure and the bound (4.16) is
a simplification of the true state of affairs; recall Exercise 4.13.

Exercise 4.19. Consider the one-dimensional reaction-diffusion problem
−εv′′ + bv = r on (0, 1), with v(0) and v(1) given. Assuming sufficient
smoothness of b and r, the decomposition v = S + E0 + E1 of the solution
into its smooth and layer components is given in Remark 2.50. Show that
‖Ej‖1,ε = O(ε1/4) for j = 0, 1, and consequently ‖v − S‖1,ε → 0 as ε →
0. This says that, with respect to the norm ‖ · ‖1,ε, the reaction-diffusion
problem is regularly perturbed in the sense of the commuting diagram (1.5);
it is not singularly perturbed. Use the same decomposition of v to prove
that the reaction-diffusion problem is singularly perturbed with respect to
the L∞[0, 1] norm.

Exercise 4.20. By using the decomposition of Theorem 2.44 for the solution
of the one-dimensional convection-diffusion problem (2.14), show that this
problem is singularly perturbed with respect to the norm ‖ · ‖1,ε.

For further discussion of the material in this section, see [MOS12],
[RST08, Section III.1], and the references therein.

4.3. General comments on numerical methods

Numerical methods (such as central differencing on equidistant meshes) that
contain no mechanism for stabilizing solutions in exponential layers will
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usually have wild oscillations in their computed solutions on much of Ω, as
in section 3. As we shall see, this problem can be handled by modifying
the discretisation of the convective terms (e.g., using some form of finite
difference upwinding or special choices of finite element trial and test spaces)
and by modifying the mesh (e.g., a two-dimensional Shishkin mesh). When
this is done correctly, one can compute accurate solutions inside these layers.

Characteristic layers, on the other hand, differ in both respects:

• If the method has no stabilizing mechanism specifically designed to
address characteristic layers and no special mesh is used for these
layers, then the layer will induce small oscillations in the computed
solution. But these oscillations usually appear only inside and near
the characteristic layer, so the solution can still be computed accu-
rately on the rest of Ω.

• It is often difficult—at least in the case of interior layers—to com-
pute accurate solutions inside characteristic layers.

Thus one could use some form of upwinding (i.e., some discrete approxi-
mation of a ·∇u that is skewed away from the outflow boundary) to stabilize
the method for exponential layers, combined with some heuristic mesh re-
finement near characteristic layers. Whether or not the mesh refinement
yields an accurate solution inside the characteristic layers, nevertheless the
solution elsewhere will be accurate.

The following pair of examples is related to our observation that one can
to a certain extent neglect characteristic layers but not exponential layers,
and it is also related to Exercises 4.16 and 4.17.

Consider again Example 4.8 but with g(x, y) ≡ 1. Then the solution
u(x, y) has exponential boundary layers along x = 1 and y = 1. The re-
duced solution u0(x, y) will of course ignore these layers, and one finds that
‖u− u0‖1,ε = O (1).

On the other hand the solution u of Example 4.2 has two characteristic
boundary layers and one exponential boundary layer. Schieweck [Sch86]
proves that if one sets v(x, y) = u0(x, y) − u0(1, y)e

−(1−x)/ε (this is the
reduced solution plus an appropriate exponential layer term, so v ignores
only the parabolic layers), then ‖u− v‖1,ε ≤ Cε1/4.
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Chapter 5

Finite Difference
Methods in Two
Dimensions

Consider the boundary value problem (4.1) posed on the unit square Ω and
under the hypothesis (4.9) on the convection coefficients, viz.,

a(x, y) =
(
a1(x, y), a2(x, y)

)
> (α1, α2) > (0, 0) on Ω.

Assume that the mesh {(xi, yj)} is rectangular and equidistant in each co-
ordinate direction: xi = ih and yj = jk for i = 0, . . . , N and j = 0, . . . ,M
with h := 1/N and k := 1/M .

We use a standard approximation of the second-order derivatives:
(5.1)

uxx(xi, yj) ≈
uNi+1,j − 2uNij + uNi−1,j

h2
, uyy(xi, yj) ≈

uNi,j+1 − 2uNij + uNi,j−1

k2
,

where uNij is the computed solution at each mesh point (xi, yj).

5.1. Extending one-dimensional approaches

As for one-dimensional problems, approximating the first-order derivatives
in (4.1) by central differences

ux(xi, yj) ≈
uNi+1,j − uNi−1,j

2h
and uy(xi, yj) ≈

uNi,j+1 − uNi,j−1

2k

87
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Figure 5.1. Mesh points and line indicating nearby interior layer

leads to an unstable method. Instead, one can use simple upwinding,

ux(xi, yj) ≈
uNi,j − uNi−1,j

h
and uy(xi, yj) ≈

uNi,j − uNi,j−1

k
,

and this yields an M-matrix (we leave this as an exercise!). Combining this
with (5.1) and the approximation u(xi, yj) ≈ uNij for the zero-order term

in (4.1), the resulting method is stable, but we expect from our experience
with ODEs that it will smear exponential boundary layers.

In fact, one can foresee heuristically that this method will also smear
interior layers. In Figure 5.1, the solid line indicates an interior layer in
the solution. Now the value of u(xi, yj) depends strongly on the u values
along the upstream portion of the subcharacteristic that passes through
(xi, yj)—this is a line through (xi, yj) parallel to the solid line drawn—but
simple upwinding makes u(xi, yj) depend on u(xi, yj−1), which introduces
inaccuracies because the value of u(xi, yj) has little to do with the values of
u on the other side of the interior layer.

A difference scheme on a family of arbitrary rectangular meshes is said
to be robust or uniformly convergent (with respect to ε) of order β > 0 in
the discrete L∞ norm if its solution {uNij } satisfies |uij − uNij | ≤ CN−β for
i, j = 0, . . . , N and all sufficiently small H, independently of ε. Here we take
N +1 mesh points in each coordinate direction for simplicity, H is the mesh
diameter, β is some positive constant that is independent of the mesh and
of ε, and we write uij instead of u(xi, yj) (we shall do likewise for all other
functions in C(Ω̄)).

For uniform convergence on an equidistant mesh, an analogue of The-
orem 3.18 shows that once again the coefficients in the scheme must have
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a certain exponential character [RST08, p.265]. One can define a five-
point scheme that is a two-dimensional analogue of the Il′in–Allen–Southwell
scheme of Example 3.22. When the data of (4.1) are smooth, the convec-
tive term satisfies the separability condition a(x, y) = (a1(x), a2(y)), one
has (4.9), and some compatibility conditions are satisfied at the corners
of Ω, this scheme can be proved to achieve uniform convergence of order 1
in the discrete L∞ norm [RS15a], like its one-dimensional analogue in Ex-
ample 3.22. Nevertheless this scheme, which is a form of upwinding, can
smear interior layers quite badly.

See also [Gos13], where the finite difference generalisations of Il′in,
Allen, and Southwell to balance laws are considered (recall our Remark 3.9).

Remark 5.1. In the one-dimensional case, when the convective coefficient
and right-hand side of the differential equation are constants and the reac-
tion term is zero, one can construct a three-point scheme (the Il′in–Allen–
Southwell scheme) that computes the true solution exactly at each mesh
point; see Exercise 3.23. This construction is possible because the difference
scheme must be satisfied exactly by only three functions: a particular so-
lution of the differential equation and two linearly independent solutions of
the homogenous differential equation. But in two dimensions no analogous
result is possible for a scheme that uses a fixed number of points because the
homogeneous differential equation has infinitely many linearly independent
solutions.

5.2. Shishkin meshes

Continuing in the footsteps of our earlier sections, we now consider a two-
dimensional Shishkin mesh for the problem (4.1) on the unit square, while
assuming that (4.9) is satisfied so that the solution has exponential boundary
layers along x = 1 and y = 1. Let N , an even integer, be the number of mesh
intervals in each coordinate direction. Define the transition points on the x-
and y-axes to be 1 − λx and 1 − λy, respectively, where λx = (2ε/α1) lnN
and λy = (2ε/α2) lnN . The fine and coarse mesh regions on the coordinate
axes each contain N/2 mesh intervals. See Figure 5.2 for the mesh with
N = 8, which shows the tensor product of the one-dimensional Shishkin
mesh of section 3.4 with itself.

One can define simple upwinding on this rectangular two-dimensional
Shishkin mesh by applying the one-dimensional formula (3.20) in each
coordinate direction, as follows. Set hi = xi − xi−1 for each i and
kj = yj − yj−1 for each j. For each mesh function {vi,j}Ni,j=0, set
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0 1− λx 1
0

1− λy

1

�
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�

Figure 5.2. Shishkin mesh with N = 8 for two exponential outflow layers

D−
x vij = (vi,j − vi−1,j)/hi, D−

y vij = (vi,j − vi,j−1)/kj, and

δ2xvij =
2

hi + hi+1

(
vi+1,j − vi,j

hi+1
− vi,j − vi−1,j

hi

)
,

δ2yvij =
2

kj + kj+1

(
vi,j+1 − vi,j

kj+1
− vi,j − vi,j−1

kj

)
.

The two-dimensional simple upwind difference scheme for approximating
(4.1) is then

−ε(δ2x + δ2y)u
N
ij + a1(xi, yj)D

−
x u

N
ij + a2(xi, yj)D

−
y u

N
ij + biju

N
ij = fij

for i, j = 1, . . . , N − 1,

uNi,j = gij if {i, j} ∩ {0, N} is nonempty.

This is a five-point scheme. Its associated matrix is an M-matrix.

Assuming that the decomposition and bounds (4.14) for the true solution
are valid, an analysis similar to that of section 3.4 shows that the simple
upwind solution uNij on a Shishkin mesh satisfies

(5.2) |uij − uNij | ≤ CN−1 lnN for all i, j.

That is, one gets almost first-order uniform convergence in the discrete L∞

norm.

Exercise 5.2. Consider the problem (4.1), with Ω = (0, 1)2, under the hy-
pothesis (4.9). Assume the decomposition (4.14). This problem is solved nu-
merically using simple upwinding on a rectangular Shishkin mesh {(xi, yj)}
of the same type as Figure 5.2. Show that the matrix associated with this
difference scheme is an M-matrix. Use this property and the given decom-
position of u to prove (5.2). Hint. Imitate closely the proof of Theorem 3.39.
You will find that the one-dimensional barrier functions defined there can
be used in two dimensions also.
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If one modifies this scheme (as in the hybrid difference scheme of Exer-
cise 3.42) by using central differencing instead of simple upwinding wherever
the Shishkin mesh is fine in the relevant coordinate direction, then the M-
matrix property is retained and a variant of the simple upwind analysis
yields (see [LS99]) the improved bound

|uij − uN,hybrid
ij | ≤ CN−1 for all i, j,

where uN,hybrid
ij is the solution computed by this hybrid scheme.

Kopteva [Kop03] shows, under some extra compatibility assumptions
at the corners, that one iteration of Richardson extrapolation applied to the
simple upwind solution uNij on the Shishkin mesh yields a solution vNij for
which

|uij − vNij | ≤ CN−2(lnN)2 for all i, j.

Approximation of the first-order derivatives of u is also discussed in Kop-
tera’s paper.

5.3. Characteristic boundary layers

We now discard the hypothesis that a(x, y) > (0, 0) on Ω in order to intro-
duce characteristic boundary layers into the problem.

Remark 5.3 (Shishkin’s obstacle theorem). The convergence results ear-
lier in Chapter 5 are all proved under hypotheses that exclude characteristic
layers. The difficulty of accurately approximating characteristic boundary
layers is underlined by a remarkable negative result of Shishkin [Shi89],
which we now describe. Suppose the solution of the problem has a charac-
teristic boundary layer. Suppose also that one applies any difference scheme
on an equidistant mesh whose coefficients are drawn from a fixed class of
functions (e.g., the Il′in–Allen–Southwell scheme, whose coefficients are all
exponentials and polynomials; the point is that one is forbidden to vary the
difference scheme by choosing the type of coefficients to correspond exactly
to the precise nature of each new set of boundary data). Then this scheme
cannot yield uniform convergence of any positive order in the discrete L∞

norm inside the characteristic boundary layer for all smooth and compatible
boundary data g. The essential reason for this negative result is that, at
each point (x, y) near ∂0Ω, a characteristic boundary layer depends on all
the data along that connected component of ∂0Ω (see (4.8)). This is quite
unlike an exponential boundary layer, whose behaviour at (x, y) near ∂+Ω
depends only on the difference between the reduced solution u0 and the
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Figure 5.3. Shishkin mesh with N = 8 for one exponential and two
characteristic layers (see Example 4.2)

boundary data at the nearest boundary point (see (4.6)), a much simpler
situation.1

For a detailed proof of this result in the context of a time-dependent
problem, cf. [MOS12, Chapter 15].

Consider now the problem (4.1) with a = (a1, 0) where a1 > α1 > 0,
and Ω = (0, 1)2. The solution of this problem (cf. Example 4.2) has an
exponential boundary layer at x = 1 and characteristic boundary layers at
y = 0 and y = 1. A Shishkin mesh appropriate to this problem is constructed
as follows. Use an x-axis transition point exactly as in Figure 5.2. Place
y-axis transition points at λy1 and 1− λy2, where each λyk is O

(
ε1/2 lnN

)
,

then use N/4 equidistant mesh intervals in each of [0, λy1] and [1 − λy2, 1]
and N/2 equidistant mesh intervals in [λy1, 1 − λy2]; see Figure 5.3. For
simple upwinding, O’Riordan and Shishkin [OS08] show that under certain
fairly strong hypotheses on the smoothness and compatibility of the data of
the problem, simple upwinding on this Shishkin mesh yields

|uij − uNij | ≤ CN−1(lnN)2 for all i, j,

where uNij is the computed solution. This difference scheme is stabilised in

the direction of flow by the use of simple upwinding (this addresses the expo-
nential outflow layer) but the scheme contains no mechanism to stabilise the
characteristic boundary layers, which are handled entirely by the Shishkin
mesh.

A large collection of numerical computations on Shishkin meshes for
various problems can be found in [FHM+00]. The construction and im-
plementation of Shishkin meshes for boundary layers along straight portions

1Historical Note. The “obstacle” described in Remark 5.3 motivated Grisha Shishkin to
search for an approach other than fitted schemes to obtain uniform convergence inside character-
istic layers. His solution? The Shishkin mesh.
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of ∂Ω is straightforward once the asymptotic nature of the layer has been
ascertained, and most numerical examples in the literature are of this type.
Shishkin meshes for curved boundary layers were used in [Kop07b]; see
also [KO10]. For curved interior layers there are few examples in the liter-
ature; see [MS97] for a heuristic approximation of a Shishkin meshes that
yields a visually satisfactory solution.

Shishkin and Shishkina’s book [SS09] contains a wealth of theoreti-
cal results for finite difference methods applied on these meshes to solve
many convection-diffusion problems. A partial summary of these is given
in [KO10].

5.4. Other remarks

Remark 5.4 (Defect correction method). This is a general technique that
seeks to generate a useful higher-order finite difference scheme for any prob-
lem by combining a stable low-order scheme with a higher-order but unstable
scheme.

Consider an arbitrary rectangular mesh. Compute an initial approx-
imation ûN by using simple upwinding: solve LN

upû
N = fN . Substitute

this solution into the formally higher-order central difference scheme LN
c

to compute the “defect” σN := fN − LN
c ûN . Then compute the “defect

correction” δN by solving LN
upδ

N = σN . Hence, we form the final solution

uN := ûN + δN .

This method avoids instability by solving only discrete systems that
involve the upwind operator LN

up, yet aims to attain the higher-order con-

vergence associated with the operator LN
c . The idea can be placed in a

more general setting and has been applied to many problems unrelated to
convection-diffusion; see [BR84]. For analyses of a defect correction method
that combines simple upwinding and central differencing for one-dimensional
convection-diffusion problems, see [Lin04] and [LK10]. Defect correction
is related to Richardson extrapolation, and to obtain a rigorous proof of its
validity in two dimensions on a Shishkin mesh like that of Figure 5.2 would
require some extension of the delicate two-dimensional analysis in [Kop03].
Nevertheless numerical results for the method are encouraging; see Remark
6.50.

Finally, we point out that in convection-diffusion problems, when one
no longer assumes hypotheses such as a(·, ·) > (0, 0), then although simple
upwinding remains stable (i.e., the computed solution is free of nonphys-
ical oscillations), it can give dangerously misleading results. Brandt and
Yavneh [BY91] give an example of linearized recirculating flow in an annu-
lus where the subcharacteristics are circles and, except near the boundary
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of the domain, the solution computed by a version of simple upwinding is
O (1) distant from the true solution!

Remark 5.5. For the two-dimensional reaction-diffusion problem of Re-
mark 4.18, one can use a Shishkin mesh that is a tensor product of the
one-dimensional Shishkin meshes of Remark 3.44 together with a standard
five-point discretisation of the differential equation. For N mesh intervals in
each coordinate direction, this scheme is shown by Clavero et al. [CGO05]
to yield a computed solution {uNij } that satisfies

(5.3) |uij − uNij | ≤ C(N−1 lnN)2 for all i, j,

under suitable smoothness and corner compatibility conditions on the data
of the problem. Andreev [And06] uses a sophisticated argument to discard
these compatibility conditions, though his bound |uij −uNij | ≤ CN−2(lnN)4

is slightly worse than (5.3).
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Chapter 6

Finite Element
Methods

If one attempts to solve a convection-diffusion problem by means of a stan-
dard Galerkin finite element method (FEM) with linear or bilinear elements
on an equidistant mesh, then a typical computed solution will display large
oscillations. Thus some mechanism is needed to stabilize an FEM: a special
choice of trial or test functions, or a special mesh, or a modification of the
standard bilinear form, or a combination of these devices. In the sections
that follow we discuss each in turn.

Two good books on finite element methods are [BS08] and [GT17].

6.1. The loss of stability in the (Bubnov–)Galerkin FEM

In the standard Galerkin finite element method—which more precisely could
be called the Bubnov–Galerkin FEM—the trial and test spaces are the same,
except perhaps for the boundary conditions on each; see [BS08].

To begin, we return to one-dimensional problems. Recall the convection-
diffusion two-point boundary value problem (3.1):

Lu(x) := −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,(6.1a)

u(0) = u(1) = 0,(6.1b)

where 0 < ε ≤ 1, a(x) ≥ a > α > 0, and b(x) ≥ 0 on [0,1], and a, b, and f
lie in C1[0, 1].

To solve (6.1) numerically on an equidistant mesh xi = i/N (for i =
0, 1, . . . , N), suppose we use a standard Galerkin method with piecewise

polynomials. Let SN = span{φi}N−1
i=1 denote the trial space. Then the
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96 6. Finite Element Methods

computed solution uN (x) :=
∑N−1

i=1 uN (xi)φi(x) ∈ SN is generated by a
weak form of the differential equation:∫ 1

0

[
ε(uN )′(x)φ′

i(x) + a(x)(uN )′(x)φi(x) + b(x)uN (x)φi(x)
]
dx(6.2)

=

∫ 1

0
f(x)φi(x) dx for i = 1, . . . , N − 1.

Exercise 6.1. For the two-point boundary value problem (6.1) with a(·)
constant and b ≡ 0, show that the Galerkin FEM with piecewise linears on
an equidistant mesh will generate the same discrete matrix as the central
differencing method (3.2).

Exercise 6.1 implies that when one applies the piecewise linear Galerkin
FEM to solve Example 1.1, one obtains again the unsatisfactory oscillatory
solution of Figure 3.1. In Chapter 3 we explained this phenomenon by means
of M-matrices and discrete L∞-norm arguments, but in a finite element
context, it is more natural to work with L2[0, 1] and related Sobolev norms,
so we shall do this now.

The standard norm used in finite element analyses of second-order two-
point boundary value problems on [0, 1] is the Sobolev H1[0, 1] norm

(6.3) ‖v‖1 =
(
|v|21 + ‖v‖20

)1/2
,

where ‖ · ‖0 is the L2[0, 1] norm and |v|1 = ‖v′‖0 is the H1[0, 1] seminorm.

Typical solutions of (6.1) contain a layer component z(x) := e−k(1−x)/ε for
some constant k > 0, and a quick calculation shows that |z|1 = O(ε−1/2).
This implies that the norm (6.3) is scaled incorrectly for measuring solutions
of (6.1); it should be replaced by

(6.4) ‖v‖1,ε :=
(
ε|v|21 + ‖v‖20

)1/2
,

so that both ε1/2|u|1 and ‖u‖0 are O(1).

Assume that

(6.5) b(x)− a′(x)

2
≥ C5 > 0 for x ∈ [0, 1] and some constant C5.

(Since a(·) > α > 0, one can always obtain (6.5) by a change of variable,
as in Remark 2.12.) Multiply the differential equation (6.1a) by u then
integrate over [0, 1]; after an integration by parts, one has

ε|u|21 +
∫ 1

0

(
b− a′

2

)
u2 dx =

∫ 1

0
fu dx.

Hence

ε|u|21 + C5‖u‖20 ≤ ‖f‖0‖u‖0 ≤
1

2C5
‖f‖20 +

C5

2
‖u‖20,
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using the Cauchy–Schwarz and arithmetic-geometric mean inequalities.Thus

ε|u|21 +
C5

2
‖u‖20 ≤

1

2C5
‖f‖20,

which implies the stability bound (cf. Lemma 4.14)

(6.6) ‖u‖1,ε ≤ C‖f‖0 for some constant C.

Inequality (6.6) is a sharp a priori estimate of the true solution u of (6.1),
as ε1/2|u|1, ‖u‖0, and ‖f‖0 are all typically O(1). But what analogous sharp
a priori bound should we expect for an accurate piecewise linear approxi-
mation uh of u that is computed by a finite element method? The answer
“‖uh‖1,ε ≤ C‖f‖0” is incorrect: for if uh were a piecewise linear interpolant
of u on an equidistant mesh of diameter h � ε, then∫ 1−h

0
ε(u′h)

2 dx = O(ε)

and, because of the boundary layer in u at x = 1,∫ 1

1−h
ε(u′h)

2 dx = ε

∫ 1

1−h
O
(

1

h2

)
dx = O

( ε
h

)
,

so

ε1/2|uh|1 = O (ε/h)1/2 but ‖uh‖0 = O(1) and ‖f‖0 = O(1),

i.e., the scaling of ε1/2|uh|1 makes this term excessively small.

Nevertheless this calculation also shows that h1/2|uh|1 gives the correct
scaling (i.e., yields a term that is O(1)) when uh is the piecewise linear
interpolant of u. Thus we seek finite element methods whose computed
solutions vh satisfy the stability bound

(6.7) h1/2|vh|1 + ‖vh‖0 ≤ C‖f‖0,

with a constant C that is independent of h and ε.

Exercise 6.2. Here is an alternative motivation for the weighted seminorm
h1/2|vh|1. Let u be the solution of (6.1). Let v be any function that satisfies
v(1) = u(1) = 0 and v(1− h) = u(1− h), where 1 > h � ε, so typically one
has v(1− h) = O(1). Now

|v(1− h)| =
∣∣∣∣
∫ 1

1−h
v′(x) dx

∣∣∣∣ .
Apply the Cauchy–Schwarz inequality to bound this integral. In general,
when does this inequality give a sharp bound? Use this property to justify
the weighting h1/2|v|1 for v that is linear on [1 − h, 1]. Why doesn’t this
justify the weighting h1/2|v|1 for v = u on [1− h, 1]?
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The oscillating piecewise linear solution vh of the standard Galerkin
FEM that is displayed in Figure 3.1 has

h

∫ 1

0.75
(v′h)

2 dx ≈ Ch

∫ 1

0.75

(
1

h

)2

dx = Ch−1 �≤ C‖f‖20,

so it does not satisfy the bound (6.7). Thus (6.7) excludes large nonlocal
oscillations like those of Figure 3.1; this is why we refer to it as a stability
bound.

Exercise 6.3. Suppose that the standard Galerkin FEM with piecewise
polynomials is used to solve (6.1) on an equidistant mesh. Deduce from (6.2)
that its solution uN satisfies

ε1/2|uN |1 + ‖uN‖0 ≤ C‖f‖0 for some constant C.

This stability bound is of course weaker than (6.7), and as Figure 3.1 shows,
it is not strong enough to forbid damaging oscillations in the computed
solution.

Remark 6.4. In general, stabilized FEMs that are satisfactory for convec-
tion-diffusion problems satisfy stability bounds that may look different from
(6.7) but turn out to have some connection with it. This connection is obvi-
ous for the streamline diffusion FEM of section 6.4; in the case of continuous
interior penalty stabilization, see Remark 6.55.

Remark 6.5. If instead of piecewise linears, one uses higher-degree piece-
wise polynomials in the Galerkin FEM, this has a certain stabilizing effect;
see section 6.5 and [BR94,CKSL+14,KT11].

6.2. Relationship to classical FEM analysis

Consider once more the two-dimensional boundary problem (4.1):

Lu(x, y) := −εΔu(x, y) + a(x, y) · ∇u(x, y) + b(x, y)u(x, y) = f(x, y)

(6.8a)

on a bounded domain Ω ⊂ R2, with

u(x, y) = 0 on ∂Ω,(6.8b)

where 0 < ε ≤ 1, and the functions a, b, and f are assumed to be Hölder
continuous on Ω̄, the closure of Ω. For convenience, in (6.8b) we took the
Dirichlet boundary condition to be homogeneous. We shall assume (cf. Re-
mark 4.15) that

(6.9) b(x, y)− diva(x, y)

2
≥ C5 > 0 on Ω̄ for some constant C5,

as is often done in classical finite element analyses.
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Write (·, ·) for the L2(Ω) innner product, i.e., (f, g) :=
∫
Ω fg. Then

the L2(Ω) norm of a function f is ‖f‖0 := (f, f)1/2, its H1(Ω) seminorm
is |f |1 := (∇f,∇f), and its H1(Ω) norm is ‖f‖1 = (‖f‖20 + |f |21)1/2. The
Sobolev space H1(Ω) is the space of functions v defined on Ω for which ‖v‖1
is finite. Its subspace H1

0 (Ω) comprises those functions in H1(Ω) whose
traces vanish on the boundary ∂Ω.

The standard weak form of the boundary value problem (6.8) is to find
u ∈ H1

0 (Ω) such that

(6.10) B(u,w) = (f, w) for all w ∈ H1
0 (Ω),

where the bilinear form B(·, ·) is defined by

(6.11) B(v, w) := (ε∇v,∇w) + (a · ∇v, w) + (bv, w) ∀v, w ∈ H1(Ω).

Now (6.9) implies the coercivity/stability inequality

(6.12) B(v, v) ≥ min{1, C5}‖v‖21,ε ∀v ∈ H1
0 (Ω),

where

‖v‖1,ε := (‖v‖20 + ε|v|21)1/2.
This inequality is essentially equivalent to (6.6), as can be seen by comparing
the derivations of (6.6) and (6.12).

Suppose now that (6.10) is discretised using an FEM with globally con-
tinuous piecewise linears on a triangulation of Ω. One can then prove, as
for (6.12), that the (Bubnov–)Galerkin FEM solution uNGal satisfies the co-

ercivity inequality B(uNGal, u
N
Gal) ≥ min{1, C5}‖uNGal‖21,ε, but as we saw in

section 6.1 this property is not strong enough to exclude bad oscillations
from uNGal. Instead, we need some two-dimensional analogue of the stronger
property (6.7) for our FEM solution to be accurate.

There is a further difficulty that arises when trying to extend classical
FEM analyses to convection-diffusion problems: as well as stability, one
needs the property of continuity or boundedness of the bilinear form [BS08,
Section 2.5]. Now the bilinear form B(·, ·) of (6.11) satisfies the coercivity
inequality (6.12) with respect to the norm ‖ · ‖1,ε, so the classical argument
requires boundedness of B(·, ·) with respect to the same norm, i.e., it requires
an inequality of the form

(6.13) |B(v, w)| ≤ C‖v‖1,ε‖w‖1,ε for all v, w ∈ H1
0 (Ω),

where C is some constant (independent of v, w and of course ε). It is easy
to see that the diffusion and reaction terms in (6.11) pose no difficulties
for (6.13). But a little experimentation with pen and paper will convince
the reader that it is impossible to prove (6.13) because of the convection
term in (6.11).
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100 6. Finite Element Methods

Exercise 6.6. Demonstrate that one cannot prove (6.13) with a constant C
that is independent of ε, v, and w.

Remark 6.7. For finite element methods, reaction-diffusion problems

(6.14) −εΔu+ bu = f on Ω, u = 0 on ∂Ω,

where b(x, y) ≥ 2β2 > 0 on Ω̄, are a very different animal from convection-
diffusion problems, because their associated bilinear form satisfies the sta-
bility inequality (6.12) and the continuity bound (6.13). Consequently, the
solution uNGal computed by any standard Galerkin method with globally

continuous trial and test space V N ⊂ H1
0 (Ω) will satisfy the quasi-optimal

bound

(6.15) ‖u− uNGal‖1,ε ≤ C inf
vN∈V N

‖u− vN‖1,ε

for some constant C, by Ceá’s Lemma [BS08, Theorem 2.8.1].

This apparent success is due to the weakness of the norm ‖ · ‖1,ε when
solving reaction-diffusion problems—recall Exercise 4.19! When ε is very
small, ‖u‖1,ε ≈ ‖u‖0 for typical solutions of (6.14), so (6.15) says merely
that we get convergence in the L2(Ω) norm. As the L2(Ω) norm is so weak,
no special method is needed to get convergence, unlike, for example, the
L∞(Ω) norm, for which (even in one dimension) Remark 3.27 tells us that
some special scheme is needed. To address this deficiency of ‖·‖1,ε, in [LS12]

it is replaced by the balanced norm (‖v‖20 + ε1/2|v|21)1/2 where the exponent
of ε has been changed so that both components of the norm are O(1) for
typical solutions of (6.14) when ε is small.

See Remark 6.38 for further comments on the reaction-diffusion problem.

Exercise 6.8. Verify that the bilinear form associated with (6.14) satisfies
the stability inequality (6.12) and the continuity bound (6.13). Deduce that
the FEM solution satisfies (6.15).

6.3. L∗-splines

In Chapter 6 our main interest is in FEMs whose solutions satisfy (6.7)
or some related inequality, but in the present section we make a detour to
consider a class of FEMs that are connected with the famous Il′in–Allen–
Southwell scheme of Example 3.22.

To generate this scheme when solving the one-dimensional problem (6.1),
we shall use a Petrov–Galerkin FEM, that is, the trial space SN and test
space TN are not identical, unlike standard (Bubnov–)Galerkin methods.

On the equidistant mesh xi = i/N , for i = 0, 1, . . . , N , the trial space SN

is the standard space of piecewise linear “hat” functions that vanish at
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6.3. L∗-splines 101

x = 0, 1, so the boundary conditions in (6.1b) are satisfied. Let ā, b̄, and f̄ be
some piecewise-constant approximations of a, b, and f on our mesh. Define
the test space TN to be the space of approximate L∗ splines spanned by
{ψi}N−1

i=1 , i.e.,

(6.16) L̄∗(ψi)(x) := −εψ′′
i (x)− ā(x)ψ′

i(x) + b̄(x)ψi(x) = 0

on each subinterval (xj−1, xj), with ψi(xj) = δij , the discrete Kronecker
delta. Then each ψi has support [xi−1, xi+1]; see Figure 6.1 for an example.

The computed solution uN (x) =
∑N−1

i=1 uN (xi)φi(x) ∈ SN is generated,
as usual in FEMs, by a weak form of the differential equation

∫ 1

0

[
ε(uN )′(x)ψ′

i(x) + ā(x)(uN)′(x)ψi(x) + b̄(x)uN (x)ψi(x)
]
dx

=

∫ 1

0
f̄(x)ψi(x) dx for i = 1, . . . , N − 1.

If one defines ā by the quadrature rule

∫ 1

0
ā(x)(uN )′(x)ψi(x) dx = ai

∫ 1

0
(uN )′(x)ψi(x) dx,

with analogous definitions for b̄ and f̄ , then one obtains the Il′in–Allen–
Southwell scheme.

Exercise 6.9. Verify that the FEM just described does generate the Il′in–
Allen–Southwell scheme.

The alternative choice

ā
∣∣∣
(xj−i,xj)

=
aj−1 + aj

2
for each j

(with similar definitions for b̄ and f̄) yields the El Mistikawy–Werle scheme
of section 3.3.

Both of these are successful schemes, and the only special construction
we made when generating them in an FEM context was to use L∗ splines.
Why do L∗ splines make such good test functions?

The explanation is to be found by considering Green’s functions for the
differential operator L, which we examined in section 2.2.

For each mesh point xi ∈ (0, 1), let G(·, xi) denote the Green’s func-
tion associated with that point. (An explicit formula for G in the case of
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Figure 6.1. L∗-spline ψi where N = 5, xi = 0.6 and ā = 2, b̄ = 0

constant a and b ≡ 0 was given in equation (2.12).) Then

ui =

∫ 1

0
f(ξ)G(ξ, xi) dξ

=

∫ 1

0
(Lu)(ξ)G(ξ, xi) dξ

=

∫ 1

0

[
ε(u′(ξ))Gξ(ξ, xi) + a(x)u′(ξ)G(ξ, xi) + bu(ξ)G(ξ, xi)

]
dξ.

Note the resemblance between this identity and the weak form of the differ-
ential equation that was used above to generate the FEM, and note also the
similarity between the definitions of G and ψi. The key idea of this Petrov–
Galerkin FEM is to choose the ψi in such a way that the test space TN is
capable of producing a good approximation of the Green’s function.

Remark 6.10. When piecewise linears or bilinears are used as the trial
space for convection-diffusion problems in one or two dimensions, useful
numerical methods on general meshes are based on some test space that is
constructed to approximate the Green’s function of the continuous operator.
This Green’s function is skewed away from the outflow boundary; see [FK12,
Mor96] for discussions of its properties in two dimensions.

Remark 6.11. An alternative approach to using test functions that ap-
proximate L∗ splines is to shift the special construction from the test space

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



6.4. The streamline-diffusion finite element method (SUPG) 103

to the trial space by using trial functions φ that are approximate L splines
(i.e., to satisfy some approximate version of Lφ = 0), together with some
standard space of test functions, such as piecewise linears. The relation-
ship between this dual approach and the use of L∗-spline test functions is
discussed at length in [RST08, Section I.2.2.5].

Some authors have generalized the L∗ splines of (6.16) to two dimen-
sions by taking their tensor product on rectangular grids (see, e.g., [OS91]),
but this method is applicable only on domains whose boundary comprises
straight-line segments, each of which is parallel to one of the coordinate
axes, and so negates one of the main advantages of finite element methods
over finite differences. Consequently, we do not discuss this approach here
but refer the reader to [RST08, Section III.3.5.1].

An alternative generalization that is genuinely two dimensional is found
in Sacco et al. [SGG99]: To solve (4.1) with b ≡ 0 on an arbitrary triangular
mesh, one uses a trial space with local basis

1, e(ā1x+ā2y)/ε, ā1y − ā2x,

where (ā1, ā2) is a piecewise-constant approximation of a = (a1, a2). Here
the functions 1 and eā1x+ā2y are two-dimensional analogues of the functions
that appear in approximate L splines for the corresponding one-dimensional
problem (6.1), but the third function ā1y − ā2x is intrinsically two dimen-
sional. Observe that all three functions lie in the null space of the operator
−εΔ(·) + ā1(·)x + ā2(·)y, i.e., they are approximate L splines. Piecewise
linears are used in the test space. It is shown in [SS98] that this method
is essentially equivalent to the unusual exponentially upwinded scheme used
in the software package PLTMG.

A different approach is used in [BPP15], which gives an FEM extension
of the Il′in–Allen–Southwell formula to unstructured grids in two and three
dimensions.

Remark 6.12. In [DG11] and subsequent papers, the authors develop a
general theory of “optimal test functions” that in the one-dimensional case
includes L∗ splines as a special case. This paper also provides references to
some attempts of other authors to extend the one-dimensional L∗-spline ap-
proach to two dimensions. The methodology of [DG11] uses the framework
of discontinuous Galerkin FEMs.

6.4. The streamline-diffusion finite element method (SUPG)

We now return to FEMs for solving (6.8) that enjoy stability bounds that
are two-dimensional analogues of (6.7). Of these, the best known is the
streamline-diffusion FEM (SDFEM) of Hughes and Brooks [HB79]; it is also
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called the streamline upwind Petrov-Galerkin method (SUPG). Although this
is one of the earliest FEMs designed specifically for convection-diffusion
problems (it dates from 1979), it is still one of the best; see the numerical
comparison of various FEMs in [ACF+11].

Given a partition ΩN of Ω into elements τ (triangles or rectangles),
let SN be a conforming trial space (i.e., SN ⊂ H1

0 (Ω)) of piecewise polyno-
mials of degree k ≥ 1 defined on ΩN . Then the SDFEM solution uSD ∈ SN

of (6.8) is defined by

BSD(uSD, w
N ) = (f, wN ) +

∑
τ∈ΩN

δτ (f, a · ∇wN )τ ∀wN ∈ SN ,(6.17)

where

BSD(·, ·) := B(·, ·) +Bstab(·, ·),
B(·, ·) is the standard Galerkin bilinear form defined in (6.11),

and

Bstab(v, w) :=
∑
τ∈ΩN

δτ (−εΔv + a · ∇v + bv, a · ∇w)τ .

Here (·, ·)τ is the L2(τ) inner product and the user-chosen parameter δτ is
a nonnegative constant on each element τ ∈ ΩN ; it will be used to stabilize
the method. If δτ = 0 for all τ ∈ ΩN , then the SDFEM reverts to the
standard Galerkin method.

The term
∑

τ∈ΩN δτ (f, a · ∇wN ) is included in the right-hand side of
(6.17) to give the standard FEM property of Galerkin orthogonality:

(6.18) BSD(u− uSD, w
N ) = 0 ∀wN ∈ SN .

This identity is also known as the Galerkin projection property. It says
that the SDFEM is consistent, in an FEM sense, with the boundary value
problem (6.8).

Remark 6.13 (Terminology). In the particular case where SN comprises
piecewise linears or bilinears (i.e., k = 1 and SN = P1 or Q1 in the usual
notation for FEM trial spaces [BS08]), and b ≡ 0, the bilinear form of (6.17)
simplifies to

BSD(uSD, w
N )

= (ε∇uSD,∇wN ) + (a · ∇uSD, w
N ) +

∑
τ∈ΩN

δτ (a · ∇uSD, a · ∇wN )τ ,

which is the same as the standard Galerkin bilinear form B(·, ·) associ-
ated with the differential operator −εΔu − δ|a|2uaa + a · ∇u, where δ is a
piecewise-constant function and ua denotes the directional derivative in the
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subcharacteristic direction. That is, we have added artificial diffusion to
the PDE, but only in the direction of the subcharacteristics, which for sta-
tionary problems are the same as the so-called streamlines of the differential
operator. This is the explanation of the name SDFEM.

Alternatively, the SDFEM can be regarded as a Petrov–Galerkin method
with trial space SN and test space {wN +

∑
τ∈ΩN δτa · ∇wN : wN ∈ SN},

i.e., the test functions are obtained by “upwinding” the trial functions along
the subcharacteristics/streamlines. For this reason it is also known as the
SUPG method.

Remark 6.14 (Mesh terminology). Consider a mesh ΩN that partitions a
bounded domain Ω ⊂ R2. Let τ be any triangle (or convex quadrilateral)
that lies in ΩN . Denote the diameter of τ by hτ , and by ρτ the diameter of
the largest circle that can be inscribed in τ . Clearly, hτ ≥ ρτ for all τ . Set
hN = maxτ∈ΩN

hτ .

A family of meshes {ΩN}N=1,2,... is called shape-regular if for each N
there is a positive constant C, independent of N , such that hτ/ρτ ≤ C for
all τ ∈ ΩN . This condition excludes long thin elements from each mesh in
the family; thus, for example, Shishkin meshes are not shape-regular.

A shape-regular family {ΩN} of meshes is said to be quasi-uniform if
there is a positive constant C ′, independent of N , such that for each ΩN one
has hτ ≥ C ′hN for all τ ∈ ΩN . This condition says that for each ΩN the
diameters of the mesh elements do not vary much over the domain Ω.

Assume that our mesh is quasi-uniform. Then (see, e.g., [BS08]) on each
element τ ∈ ΩN one can define an interpolating polynomial uI of degree at
most k that has the standard interpolation property

(6.19) |u− uI |m,τ ≤ Chk+1−m
τ |u|k+1,τ for m = 0, 1, 2,

and all members of SN satisfy the inverse inequality

(6.20) ‖ΔwN‖0,τ ≤ Cinvh
−1
τ |wN |1,τ ∀wN ∈ SN ,

where the | · |�,τ are local Sobolev seminorms on the element τ , the norm on
L2(τ) is ‖ · ‖0,τ , and hτ denotes the diameter of τ .

We now define a norm that is stronger than ‖ · ‖1,ε and natural for the
analysis of the SDFEM. For each v ∈ H1(Ω), set

(6.21) ‖v‖SD =
(
ε|v|21 +

∑
τ∈ΩN

δτ‖a · ∇v‖20,τ + C5‖v‖20
)1/2

.
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Lemma 6.15. Suppose that the mesh is quasi-uniform and the SDFEM
parameter δτ satisfies

(6.22) 0 ≤ δτ ≤ 1

2
min

{
C5

‖b‖2L∞(τ)

,
h2τ

εC2
inv

}
for each τ ∈ ΩN .

Then the bilinear form BSD(·, ·) is coercive with respect to ‖ · ‖SD over
SN × SN , i.e.,

BSD(w
N , wN ) ≥ 1

2
‖wN‖2SD ∀wN ∈ ΩN .

Proof. For each wN ∈ ΩN , one gets easily

BSD(w
N , wN ) ≥ ε|wN |21 + C5‖wN‖20 +

∑
τ∈ΩN

δτ‖a · ∇wN‖20,τ

+
∑
τ∈ΩN

δτ (−εΔwN + bwN , a · ∇wN )τ .
(6.23)

Now the inequality st ≤ s2+t2/4 for s and t ≥ 0, the inverse inequality (6.20)
and the hypothesis (6.22) on δτ yield∣∣∣ ∑

τ∈ΩN

δτ (−εΔwN + bwN , a · ∇wN )τ

∣∣∣
≤

∑
τ∈ΩN

[
ε2δτ‖ΔwN‖20,τ + δτ‖b‖2L∞(τ)‖wN‖20,τ +

1

2
δτ‖a · ∇wN‖20,τ

]

≤ 1

2

[
ε|wN |21 + C5‖wN‖20 +

∑
τ∈ΩN

δτ‖a · ∇wN‖20,τ
]
.

Applying this bound in (6.23) then gathering similar terms, the lemma is
proved. �

Thus the SDFEM is coercive on the discrete FEM space with respect
to a norm that is stronger than ‖ · ‖1,ε. This indicates that it is a more
stable method than the Galerkin FEM which by (6.12) is coercive only with
respect to ‖ · ‖1,ε.

Remark 6.16. When SN comprises piecewise linears or bilinears (i.e.,
k = 1), the term ΔwN is zero and disappears from the proof of Lemma 6.15;
consequently, the condition (6.22) can be relaxed to 2δτ ≤ C5/‖b‖2L∞(τ). Fur-

thermore, one no longer needs the inverse inequality (6.20) so Lemma 6.15
is valid on any mesh, including a Shishkin mesh.

One can exploit Lemma 6.15 to derive an error estimate in a fairly
standard way. Set h := maxτ hτ , the mesh diameter.
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Lemma 6.17. Choose δτ such that (6.22) is satisfied. Then

(6.24) ‖uI − uSD‖SD ≤ Chk

⎡
⎣ ∑
τ∈ΩN

(
ε+ δτ + δ−1

τ h2τ + h2τ
)
|u|2k+1,τ

⎤
⎦1/2

.

Proof. By Lemma 6.15 we have

‖uI − uSD‖2SD ≤ 2BSD(u
I − uSD, u

I − uSD) = 2BSD(u
I − u, uI − uSD),

using the Galerkin orthogonality property (6.18). Now we estimate the
right-hand side term by term, invoking the Cauchy–Schwarz inequality and
the interpolation error estimates (6.19):∣∣ε(∇(uI − u),∇(uI − uSD))

∣∣ ≤ ε1/2|uI − u|1 ‖uI − uSD‖SD
≤ Cε1/2hk|u|k+1 ‖uI − uSD‖SD ;

∣∣(a · ∇(uI − u) + b(uI − u), uI − uSD)
∣∣

=
(
(b−∇ · a)(uI − u), uI − uSD

)
−
(
uI − u, a · ∇(uI − uSD)

)
≤C

⎡
⎢⎣
⎛
⎝ ∑

τ∈ΩN

‖uI−u‖20,τ

⎞
⎠1/2

+

⎛
⎝ ∑

τ∈ΩN

δ−1
τ ‖uI−u‖20,τ

⎞
⎠1/2

⎤
⎥⎦‖uI−uSD‖SD

≤Chk

⎡
⎣ ∑
τ∈ΩN

h2τ (1 + δ−1
τ )|u|2k+1,τ

⎤
⎦1/2

‖uI − uSD‖SD ;

and∣∣∣∣∣∣
∑
τ∈ΩN

δτ
(
− εΔ(uI − u) + a · ∇(uI − u) + b(uI − u), a · ∇(uI − uSD)

)
τ

∣∣∣∣∣∣
≤ C

∑
τ∈ΩN

δ1/2τ (εhk−1
τ + hkτ + hk+1

τ )|u|k+1,τ δ
1/2
τ ‖a · ∇(uI − uSD)‖0,τ

≤ C

⎡
⎣ ∑
τ∈ΩN

(ε+ δτ )h
2k
τ |u|2k+1,τ

⎤
⎦1/2

‖uI − uSD‖SD .

In the last inequality we used the bound εδτ ≤ Ch2τ , which is implied
by (6.22). Adding all of these estimates, we obtain (6.24). �

In order to extract the best possible rate of convergence from Lemma 6.17
while honouring the constraint (6.22) on δτ , we balance the various terms
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in (6.24) by choosing

(6.25) δτ =

{
δ0hτ for Peτ > 1,

δ1h
2
τ/ε for Peτ ≤ 1,

where the mesh Péclet number is defined to be Peτ := ‖a‖L∞(τ)hτ/ε. Here
δ0 and δ1 are user-chosen positive constants. The more important case
Peτ > 1 is usually referred to as the convection-dominated case.

Exercise 6.18. Verify that the choice of δτ in (6.25) does yield the best
possible rate of convergence in Lemma 6.17 subject to the constraint (6.22).

Theorem 6.19. Choose δT such that (6.22) and (6.25) are satisfied. Then
the solution uSD computed by the SDFEM satisfies the global error estimate

‖u− uSD‖SD ≤ C (ε1/2 + h1/2) hk|u|k+1 .

Proof. Substituting the choice (6.25) into (6.24) yields

‖uI − uSD‖SD ≤ C (ε1/2 + h1/2) hk|u|k+1.

One can verify readily that (6.19) implies

‖u− uI‖SD ≤ C (ε1/2 + h1/2) hk|u|k+1.

The theorem now follows from a triangle inequality. �

Remark 6.20 (Optimality of the error in various norms). In the convection-
dominated case we have ε < ‖a‖L∞(τ) hτ/2 and hence Theorem 6.19 gives
the global estimate

(6.26) ‖u− uSD‖0 +
( ∑

τ∈ΩN

δτ‖a · ∇(u− uSD)‖20,τ
)1/2

≤ Chk+1/2|u|k+1,

with δτ = δ0hτ . For comparison, (6.19) informs us that

‖u− uI‖0 ≤ Chk+1|u|k+1 and |u− uI |1 ≤ Chk|u|k+1.

Thus we see that the L2 error of the computed derivative in the streamline
direction is optimal, but the L2 error of the computed solution is order 1/2
less than optimal.

This apparent loss of accuracy in the L2 norm has attracted much atten-
tion. Zhou [Zho97] constructed a simple example for piecewise linears on
a special quasi-uniform mesh where the SDFEM converged with order only
1.5, but it is not known whether a similar loss of optimal-order accuracy in
L2 can occur for other choices of the FEM trial space SN . Other stabilized
FEMs for convection-diffusion problems suffer the same gap between theory
and practice; see [RS15c].

In particular cases some optimal results are known. Optimal convergence
in L2(Ω) for linears and bilinears on a Shishkin mesh on Ω = (0, 1)2 is proved
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in [ST03,ZLY16]; see Theorem 6.48 and Remark 6.49 below. In [CX08]
Chen and Xu prove quasi-optimality in the L∞ norm on an arbitrary grid
for the solution of a modified SDFEM for a one-dimensional convection-
diffusion problem. In a very technical paper, Sangalli [San03] shows that in
the one-dimensional case (2.14), on an equidistant grid the SDFEM yields
a solution that is quasi-optimal with respect to a certain interpolated norm
that is roughly similar to our norm ‖ · ‖SD.

Remark 6.21 (Optimal choice of δτ ). No precise general formula for an
“optimal” (in some sense) value of the SDFEM parameter δτ is known; the
choice (6.25) seems to be the best statement that one can make. There has
been much research into this question: for discussions of how to choose δτ
see, e.g., [AT04,BR94, FRSW99,HS01,MS96,RST08] and more re-
cently, [JKS11,JN13].

In (6.26) the term |u|k+1 is typically O
(
ε−k−1/2

)
. In general this will

dominate the hk+1/2 term and consequently (6.26) does not imply that the
error u− uSD is small in some norm. Thus this estimate is of limited value.
Nevertheless, one can choose some maximal subset Ω̂ of Ω that excludes all
layers, restrict the norms in (6.26) to Ω̂, then prove essentially the same
bounds again (in terms of the new norms) by means of cut-off functions
[RST08, Section III.3.2.1].

Exercise 6.22. Take δτ = 0 for each τ ∈ ΩN , so the SDFEM becomes the
standard Galerkin method (which is of course unstable in general). Imitate
the above analysis of the SDFEM to obtain

(6.27) ‖u− uGal‖1,ε ≤ Chk|u|k+1,

where uGal is the solution computed by the Galerkin method.

Recall that typically |u|k+1 = O
(
ε−k+1/2

)
because of exponential bound-

ary layers, so the bound (6.27) does not imply that the error in the Galerkin
solution is small. Nevertheless, bounds like this are sometimes presented im-
precisely as ‖u− uGal‖1,ε ≤ Chk; i.e., the dependence on |u|k+1 is hidden—
then it is used to assert misleadingly that the method will yield an accurate
computed solution! Thus in error bounds for the numerical solutions of
singularly perturbed problems, one must always examine carefully the part
played by norms of the true solution.

There are two crucial differences between Theorem 6.19 and (6.27): the
norm ‖ · ‖1,ε is too weak to suppress large oscillations in the computed solu-
tion, and (unlike Theorem 6.19) a result like (6.27) cannot be localised away
from layers using cut-off functions because these large oscillations spread far
from the boundary layers.
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Remark 6.23 (Stability of the SDFEM in different directions). Lemma 6.15
and (6.17) together imply an a priori estimate for the SDFEM solution uSD,

(6.28) ‖uSD‖SD ≤ C
(
‖f‖20 +

∑
τ

δτ‖f‖20,T
)1/2

.

Thus the method imposes some control on the streamline derivative a·∇uSD
of the computed solution. In the more interesting convection-dominated
case, with δτ = δ0hτ , inequality (6.28) says essentially that ‖a · ∇uSD‖0,τ
can be at most O

(
h
1/2
τ

)
. This property distinguishes the SDFEM from a

standard Galerkin method, for whose oscillatory solution uN one can have
‖a · ∇uN‖0,τ = O (1).

This enhanced stability in the subcharacteristic direction means that the
SDFEM can compute fairly satisfactory exponential boundary layers in so-
lutions of convection-diffusion problems, provided that δτ is chosen carefully.
Note however that the SDFEM contains no mechanism for stabilization per-
pendicular to the subcharacteristics and, consequently, along characteristic
layers the computed solution typically displays oscillations; as usual with
such layers, these oscillations are confined to a fairly small neighbourhood
of the layer.

Kopteva [Kop04] gives a detailed analysis of the accuracy of the SDFEM
inside characteristic (boundary and interior) layers.

In [MS96] the authors investigate numerically the effect that changing
the value of δτ (the same value is used for all τ for simplicity) has on the
computed solution for a problem with exponential outflow boundary layers
and a characteristic interior layer. Comparing [MS96, Figures 2 and 3],
one sees that changing δτ can affect significantly the computed solution
in the outflow layers but has little effect on the computed interior layer,
which exhibits localised oscillations; this behaviour is consistent with the
observations made in Remark 6.23.

Remark 6.24. In order to reduce or remove any oscillations that appear
along characteristic layers, several authors have modified the SDFEM by
adding artificial crosswind diffusion to the PDE or even by introducing
nonlinear “shock-capturing” terms into the SDFEM formulation. See for
example [Cod11,KLR02,LR06,SE00].

For further analysis of the SDFEM, see [RST08].
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6.5. Stability of the Galerkin FEM for higher-degree
polynomials

Earlier in this chapter we dismissed the (Bubnov–)Galerkin FEM as an
unstable method that is unsuited for the solution of convection-diffusion
problems on standard meshes. However, the stability or instability of an
FEM can be a subtle affair. In the present section we show that when
piecewise polynomials of sufficiently high degree k are used as the finite
element basis functions, then the Galerkin FEM solution is more stable
than the previous analysis suggests, and the poor behaviour of the method is
caused only by a certain component of the computed solution. Consequently,
one needs to stabilize only that component (i.e., not all of the computed
solution) in order to obtain a viable method.

Our presentation is based on the elegant paper of Knobloch and To-
biska [KT11].

Consider a shape-regular family of meshes {ΩN}, where each ΩN is a
partition of the bounded domain Ω ⊂ R2 using triangles. Once again we
use the notation of Remark 6.14. The finite element space SN ⊂ H1

0 (Ω)
comprises piecewise polynomials of degree k ≥ 3 defined on the triangular
mesh ΩN , i.e., SN

∣∣
τ
= Pk(τ) for each triangle τ ∈ ΩN . To solve (6.8)

numerically, we use the standard Galerkin bilinear form B(·, , ·) of (6.10).
That is, our finite element solution uGal ∈ SN is defined by

B(uGal, w
N ) = (f, wN ) for all wN ∈ SN .

The coercivity inequality (6.12) implies that uGal is well-defined.

The shape-regularity of the mesh implies that (cf. (6.20)) one has the
inverse inequality

(6.29) |wN | ≤ Cinvh
−1
τ ‖wN‖0,τ ∀τ ∈ ΩN ,

where the positive constant Cinv is independent of τ .

A crucial ingredient in our analysis is the following. Assume that for
each τ ∈ ΩN , the restriction of our finite element space SN to τ contains a
nontrivial “bubble space” A(τ). That is, for each τ there is some function in
SN |τ ∩H1

0 (τ) =: A(τ) that is not identically zero. These functions are called
bubble functions because of their appearance: they vanish on the boundary
of τ .

Figure 6.2 shows a one-dimensional bubble function defined on the inter-
val [0, h], and Figure 6.3 gives two distinct views of a two-dimensional bubble
function defined on a triangle in the (x, y)-plane with vertices (0, 0), (h, 0),
(0, h). (From the latter figure you can see why they are called bubbles.)
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Figure 6.2. Bubble function in one dimension

With standard piecewise polynomial trial spaces, it is easy to see that
in one dimension one needs at least quadratics to obtain bubbles, while in
two dimensions one needs polynomials of degree at least 3.

Remark 6.25. On each τ ∈ ΩN with Ω ⊂ R2, the bubble subspace

A(τ) = B Pk−3(τ) :=
{
Bv : v ∈ Pk−3(τ)

}
,

where B is the product of the barycentric coordinates of τ .

Exercise 6.26. Prove Remark 6.25.

Exercise 6.27. In the one-dimensional case, where τ is a (bounded) inter-
val, determine and prove the analogue of Remark 6.25.

Now

AN :=
⊕
τ∈ΩN

A(τ)

is a nonempty subspace of SN .

To prove stability of a bilinear form with respect to a norm, the simplest
way is to use coercivity (as in Lemma 6.15), but coercivity does not always
hold true, and then one must instead use the more general framework (see
Exercise 6.29) of an inf-sup condition.
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Figure 6.3. Two views of a bubble function in two dimensions

Recall the streamline diffusion norm ‖ · ‖SD that was defined in (6.21).
Define a weaker variant ‖ · ‖SDw of this norm:

(6.30) ‖v‖SDw :=
(
ε|v|21 +

∑
τ∈ΩN

δτ‖Πτ (a · ∇v)‖20,τ + C5‖v‖20
)1/2

,

where Πτ is the orthogonal L2(τ) projection of L2(τ) onto A(τ). It is easy
to see that ‖v‖SDw ≤ ‖v‖SD for all v for which these norms are defined.
Throughout this section, the quantity δτ in (6.30) is as specified in the next
theorem.
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Theorem 6.28. Assume that in (6.21) one has

(6.31) 0 ≤ δτ ≤ C6h
2
τ

max{ε, hτ‖a‖0,∞,τ}
for all τ ∈ ΩN ,

where the constant C6 is independent of h and ε. Then there exists a positive
constant C̃, which is independent of h and ε, such that

inf
wN∈SN

sup
vN∈SN

B(wN , vN )

‖wN‖SDw‖vN‖SDw
≥ C̃.

Proof. By (6.12) we have

B(wN , wN ) ≥ min{1, C5}‖wN‖21,ε ∀wN ∈ SN .

This does not prove the theorem as the term
∑

τ∈ΩN δτ‖Πτ (a · ∇v)‖20,τ is

missing from the right-hand side. Thus, given any wN ∈ SN , we shall
construct a function vN ∈ SN such that

(6.32) B(wN , vN) ≥ ‖wN‖2SDw and ‖wN‖SDw ≥ C̃‖vN‖SDw.

It is clear that the theorem will follow from this pair of inequalities.

First, define a bubble function zN ∈ AN by

zN
∣∣
τ
:= δτΠτ (a · ∇wN ) ∀τ ∈ ΩN .

Then

(a · ∇wN , zN )τ = δτ‖Πτ (a · ∇wN )‖20,τ ∀τ ∈ ΩN .

Hence

(6.33) B(wN , zN ) =
∑
τ∈ΩN

δτ‖Πτ (a·∇wN)‖20,τ+ε(∇wN ,∇zN)+(cwN , zN ).

Now the inverse inequality (6.29) and the assumption (6.31) yield

ε
∣∣zN ∣∣2

1,τ
≤ C2

invεh
−2
τ ‖zN‖20,τ ≤ C1C

2
invδτ‖Πτ (a · ∇wN )‖20,τ

and

‖zN‖0,τ ≤ δτ‖a‖0,∞,τ |wN |1,τ ≤ C1Cinv‖wN‖0,τ .(6.34)

Thus, applying the inequality st ≤ σs2/2 + t2/(2σ) for all σ > 0 and (6.9),
we get∣∣ε(∇wN ,∇zN )τ + (cwN , zN )τ

∣∣
≤ ε|wN |1,τ |zN |1,τ + ‖c‖0,∞,τ‖wN‖0,τ‖zN‖0,τ

≤ Ĉ
[
ε|wN |21,τ + C5‖wN‖20,τ

]
+

δτ
2
‖Πτ (a · ∇wN )‖20,τ
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for some constant Ĉ. Sum this inequality over all τ ∈ ΩN , then apply it
to (6.33), obtaining

B(wN , zN ) ≥ 1

2

∑
τ∈ΩN

δτ‖Πτ (a · ∇wN )‖20,τ − ĈB(wN , wN ),

where we also used the coercivity inequality (6.12). Setting

vN := 2zN + (1 + 2Ĉ)wN ,

the previous inequality yields the first inequality in (6.32).

To establish the second inequality in (6.32), note first that the inverse
inequality (6.29), the assumption (6.31) on δτ , and the definition of zN imply
that for each τ one has

|zN |1,τ ≤ Cinvh
−1
τ δτ‖a‖0,∞,τ |wN |1,τ ≤ CinvC6|wN |1,τ

and

‖Πτ (a · ∇zN)‖0,τ ≤ ‖a‖0,∞,τ |zN |1,τ ≤ CinvC6‖Πτ (a · ∇wN )‖0,τ .
These inequalities and (6.34) yield the second inequality in (6.32). �

Exercise 6.29. Suppose that for some norm ||| · ||| one has the coercivity
property B(vN , vN) ≥ C|||vN |||2 for all vN ∈ SN , with some constant C.
Show that this implies the inf-sup condition

inf
wN∈SN

sup
vN∈SN

B(wN , vN )

|||wN ||| · |||vN ||| ≥ C.

For simplicity,

we assume that a is constant in the remainder of section 6.5.

The general case of variable a is discussed in [KT11].

Set

ŜN = {vN ∈ H1(Ω) : vN |τ ∈ Pk−2(τ) ∀τ ∈ ΩN}.
Clearly, ŜN ∩H1

0 (Ω) � SN .

Lemma 6.30. The norms ‖ · ‖SD and ‖ · ‖SDw are equivalent on ŜN . (Here
the same values of the δτ are used in each norm.)

Proof. For all vN ∈ ŜN one clearly has ‖vN‖SDw ≤ ‖vN‖SD, so we need
show only that ‖vN‖SDw ≥ C‖vN‖SD for some positive constant C that is
independent of vN . This will be done by considering separately each τ ∈ ΩN .

Fix τ ∈ ΩN . Then ŜN
∣∣
τ
= Pk−2(τ). Recall from Remark 6.25 that

A(τ) = BPk−3(τ). Let A(τ)⊥ denote the orthogonal complement of A(τ)
in L2(τ). A key observation is that A(τ)⊥ ∩ Pk−3(τ) = {0}: for if w ∈
Pk−3(τ), then (w)(Bw) = 0 is possible only if w = 0.
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We introduce another projection. Let πτ be the orthogonal L2(τ) pro-
jection of L2(τ) onto Pk−3(τ). If z ∈ L2(τ) and Πτz = 0 = (I − πτ )z, where
I is the identity mapping, this says that z ∈ A(τ)⊥ and z ∈ Pk−3(τ), so by
our earlier observation one must have z = 0. Consequently,

z �→
[
‖Πτ (z)‖20,τ + ‖(I − πτ )(z)‖20,τ

]1/2
is a norm on L2(τ), and a fortiori a norm on Pk−1(τ). As all norms on a
finite-dimensional space are equivalent, it follows that there exists a positive
constant C7 such that

(6.35) ‖Πτ (a ·∇v)‖20,τ +‖(I−πτ )(a ·∇v)‖20,τ ≥ C7‖a ·∇v‖20,τ ∀v ∈ Pk(τ).

Here, to verify that the constant C7 is independent of v and τ , one should
transform from τ to a reference triangle of unit size, apply the norm equiv-
alence, then transform back to τ . The details of these transformations are
in [KT11].

Finally, if y ∈ Pk−2(τ), then a ·∇y ∈ Pk−3(τ), so (I−πτ )(a ·∇y) = 0 and
(6.35) yields ‖Πτ (a · ∇y)‖20,τ ≥ C7‖a · ∇y‖20,τ . This is the desired inequality,
and we are done. �

Lemma 6.30 tells us that for discretisations of the two-dimensional prob-
lem (6.8) on shape-regular triangular meshes with globally continuous piece-
wise polynomials Pk of degree k ≥ 3, the standard Galerkin FEM is just as
stable as the streamline diffusion FEM on a significant subspace Pk−2 of Pk.
Thus the instability of the Galerkin method is due to the complement of
Pk−2 in Pk.

Remark 6.31 (The one-dimensional case). Consider the one-dimensional
situation, i.e., the problem (6.1) on an arbitrary mesh (in one dimension all
meshes are shape-regular), where we use the Galerkin FEM with piecewise
polynomials of degree k ≥ 2. Retracing our earlier arguments, one finds
now that (cf. Exercise 6.27) on each mesh interval τ the bubble subspace
A(τ) = B Pk−2(τ); note the change from the two-dimensional case. Likewise,
in Lemma 6.30, one now has

ŜN = {vN ∈ H1(Ω) : vN |τ ∈ Pk−1(τ) ∀τ ∈ ΩN}.

Thus in the Galerkin solution, the subspace of piecewise polynomials of
degree k − 1 is controlled by the streamline diffusion norm and so is stable;
only the polynomials of highest degree k can cause instabilities.

Let’s take k = 2 and discuss in detail what happens. Write the mesh as
x0 < x1 < · · · < xN . Then for each mesh interval τ = [xi−1, xi], the operator
Πτ is the orthogonal L2 projection of L2(τ) onto the one-dimensional space
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spanned by the bubble function Bi(x) := (x− xi−1)(x− xi). But∫ xi

xi−1

B′
i(x)Bi(x) dx =

∫ xi

xi−1

1

2

(
Bi(x)

2
)′

dx =
1

2

[
Bi(xi)

2 − Bi(xi−1)
2
]
= 0,

so by its definition Πτ (a · ∇Bi) = aΠτB′
i = 0. Consequently, the component∑

τ∈ΩN δτ‖Πτ (a·∇v)‖20,τ of the norm ‖·‖SDw exerts no control over multiples
of Bi in the computed solution. That is, the computed Galerkin solution
can—and generally does—exhibit fast oscillations.

As we now know that the misbehaviour of computed Galerkin solutions
when solving (6.8) can be caused only by a particular component of the finite
element space, it follows that only that component needs to be stabilized.
One way of doing this is to employ local projection stabilization, which is
the main topic of [KT11]. This FEM technique for convection-dominated
problems is an alternative to streamline diffusion stabilization which has
been investigated in many papers; we do not discuss it here but instead
refer the reader to [KT11,Roo12,RST08].

Remark 6.32. A different point of view is taken in [Sch08]; although this
paper discusses a stabilized FEM, [Sch08, Remark 5.2] points out that the
main theoretical result can be restricted to the Galerkin FEM. If the solution
of the reduced problem associated with (6.8) is smooth, it is shown that an
ε-weighted weak imposition of the boundary conditions (cf. Example 6.52
below) can yield greatly improved numerical results.

6.6. Shishkin meshes

FEMs can of course be implemented on Shishkin meshes (which we denote
by ΩN

S ) like those of Figures 5.2 and 5.3; the mesh rectangles can be bisected
by one of their diagonals into triangles to permit the use of, e.g., a piecewise
linear FEM, though the way in which this bisection is done can in some
cases influence strongly the computed solution [Kop14].

Throughout section 6.6 we consider the convection-diffusion problem

−εΔu(x, y) + a(x, y) · ∇u(x, y) + b(x, y)u(x, y) = f(x, y) on Ω = (0, 1)2,

u(x, y) = 0 on ∂Ω,

with a = (a1, a2) ≥ (α1, α2) > (0, 0). Its solution u exhibits two exponential
outflow layers along the sides x = 1 and y = 1 of Ω, as in Example 4.5. We
shall assume the decomposition (4.14) of u.

To describe the analysis, we label the different regions of the Shishkin
mesh of Figure 5.2 as in Figure 6.4. Furthermore, for the mesh transition
points we take

λx =
mε

α1
lnN, λy =

mε

α2
lnN,
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0 1− λx 1
0

1− λy

1

Ω11 Ω21

Ω12 Ω22

�

�

�

�

Figure 6.4. Regions in a Shishkin mesh ΩN
S with N = 8 for two expo-

nential outflow layers

where m = 2 in section 6.6.1 and m = 5/2 in section 6.6.2. (One generally
chooses for m the smallest value that enables the analysis to work; thus,
to justify the above two choices, one must go through all the details of the
analysis in these two subsections.)

In the analysis that follows, we remind the reader that C is a generic
positive constant that is independent of the mesh.

In Figure 6.4, note that the mesh rectangles in Ω12 ∪ Ω21 have a high
aspect ratio, i.e., their length greatly exceeds their width. To analyse such
methods, the highly anisotropic nature of the mesh necessitates the use of
sharp anisotropic interpolation estimates for general meshes, which we now
describe.

Lemma 6.33. Suppose that each element τ (triangle or rectangle) of a
mesh is contained in a rectangle with side lengths (hx, hy) and contains a
rectangle with side lengths (Chx, Chy). In the case of triangles, assume also
a maximum angle condition: the interior angles are bounded away from π.
Let v ∈ H2(τ). Let vI denote the nodal interpolant (linear or bilinear) of v.
Write ‖ · ‖0,τ for the norm in L2(τ). Then [AD92,Ape99]

‖v − vI‖20,τ ≤ C
∑
|α|=2

h2α‖Dαv‖20,τ ,(6.36a)

‖∂x(v − vI)‖20,τ ≤ C
∑
|α|=1

h2α‖Dα∂xv‖20,τ ,(6.36b)

‖∂y(v − vI)‖20,τ ≤ C
∑
|α|=1

h2α‖Dα∂yv‖20,τ .(6.36c)

Here α is the multi-index (α1, α2), |α| = α1 + α2, hα = hα1
x hα2

y , and

Dα =
∂α1

∂xα1

∂α2

∂yα2
.
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The rectangular Shishkin mesh of Figure 6.4 and the triangular Shishkin
mesh obtained by bisecting each mesh rectangle will satisfy the hypotheses
of Lemma 6.33. The anisotropic estimates (6.36) are valid on any mesh sat-
isfying these hypotheses; bounds of this type are useful on Shishkin meshes
because of the very small mesh width factor in precisely the coordinate direc-
tion where the solution derivative is large. Standard isotropic interpolation
error estimates use only the diameter of the element and thereby lose the
benefit of the Shishkin mesh in the regions Ω12 and Ω21 of Figure 6.4 when
analysing the interpolation error.

Using Lemma 6.33 and the decomposition (4.14) of u, one can show
[DR97] (or see [RST08, Section III.3.5.2]) that for piecewise linear or bi-
linear interpolation on a Shishkin mesh, one has

‖u− uI‖L∞(Ω) ≤ C(N−1 lnN)2,(6.37a)

‖u− uI‖1,ε ≤ CN−1 lnN,(6.37b)

and

‖u− uI‖0 ≤ CN−2 + C
√
ε(N−1 lnN)2,(6.37c)

so

‖u− uI‖0 ≤ CN−2 when
√
ε ≤ C(lnN)−2.(6.37d)

These sharp bounds tell us the convergence rates we can hope for when
devising FEMs for convection-diffusion problems on Shishkin meshes.

Exercise 6.34. Use Lemma 6.33 and the decomposition (4.14) to prove the
interpolation error estimates (6.37).

The next exercise demonstrates how to get interpolation error estimates
using only bounds on the derivatives of the true solution—no decomposition
of that solution is used.

Exercise 6.35 (Based on [Lin01]). Consider the one-dimensional convec-
tion-diffusion problem (2.14) for which Theorem 2.27 gives bounds on the
derivatives of the true solution u. Let uI denote the piecewise linear in-
terpolant to u on the Shishkin mesh 0 = x0 < x1 < · · · < xN = 1 of
Section 3.4.

(i) For x ∈ [xi−1, xi] and i = 1, 2, . . . , N , show that

(u− uI)(x) =

∫ x

xi−1

(x− s)u′′(s) ds− x− xi−1

xi − xi−1

∫ xi

xi−1

(xi − s)u′′(s) ds.
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(ii) Suppose the function g is positive and monotonically increasing on
[xi−1, xi]. Prove that∫ y

xi−1

(y − s)g(s) ds ≤ 1

2

[∫ y

xi−1

√
g(s) ds

]2
for y ∈ [xi−1, xi].

Hint. Consider both sides of the inequality as functions of y.

(iii) Combine (i) and (ii) to get

‖u− uI‖L∞[0,1] ≤ C(N−1 lnN)2

for some constant C.

(iv) Deduce from (iii) that ‖u − uI‖1,ε ≤ CN−1 lnN for some con-
stant C, using ‖u− uI‖L2[0,1] ≤ ‖u− uI‖L∞[0,1] and∫ 1

0

[
(u− uI)′(x)

]2
dx = −

∫ 1

0
(u− uI)(x)u′′(x) dx ≤ Cε−1‖u− uI‖L∞[0,1]

by Theorem 2.27.

6.6.1. Galerkin FEM with bilinears. To see in detail how a finite el-
ement analysis for a two-dimensional problem is carried out on a Shishkin
mesh, we consider here the simplest situation: the standard Galerkin FEM,
based on the bilinear form B(·, ·) of (6.10), applied to the problem described
at the start of section 6.6. Thus the solution has two exponential boundary
layers and can be decomposed according to (4.14). This analysis is based
on [SO97].

Since u ≡ 0 on ∂Ω, we have u ∈ H1
0 (Ω). Let SN ⊂ H1

0 (Ω) be the space
of piecewise bilinear functions on the Shishkin mesh ΩN

S that vanishes on

the boundary ∂Ω. Let uNGal denote the computed solution, i.e., uNGal ∈ SN is
defined by

B(uNGal, v
N ) = (ε∇uNGal,∇vN ) + (a · ∇uNGal, v

N ) + (buNGal, v
N ) = (f, vN )

for all vN ∈ SN . Existence and uniqueness of uNGal follows from (6.12).

Theorem 6.36. There exists a constant C such that

‖u− uNGal‖1,ε ≤ CN−1 lnN.

Proof. It is easy to see that for all vN ∈ SN one has B(u, vN ) = (f, vN ),
so the Galerkin orthogonality property B(u− uNGal, v

N ) = 0 holds true. Let

uI ∈ SN be the nodal interpolant of u. By the coercivity inequality (6.12)
and Galerkin orthogonality, we have

min{1, C5}‖uI − uNGal‖21,ε ≤ B(uI − uNGal, u
I − uNGal)

= B(uI − u, uI − uNGal).(6.38)
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Now

|B(uI − u, uI − uNGal)| =
∣∣(− ε∇(uI − u),∇(uI − uNGal)

)
+
(
a · ∇(uI − u) + b(uI − u), uI − uNGal

)∣∣
=
∣∣(− ε∇(uI − u),∇(uI − uNGal)

)
−
(
uI − u, a · ∇(uI − uNGal)

)
+(b− div a)(uI − u, uI − uNGal)

∣∣
≤ C

[
‖u− uI‖1,ε · ‖uI − uNGal‖1,ε(6.39)

+ ‖u− uI‖L2(Ω11)‖a · ∇(uI − uNGal)‖L2(Ω11)

+‖u− uI‖L∞(Ω\Ω11)‖a · ∇(uI − uNGal)‖L1(Ω\Ω11)

]
.

A standard inverse inequality on the uniform coarse mesh on Ω11 yields

(6.40) ‖a · ∇(uI − uNGal)‖L2(Ω11) ≤ CN‖uI − uNGal‖L2(Ω11).

The choice of λx and λy in the Shishkin mesh implies that

measure of (Ω \ Ω11) ≤ Cε lnN,

so a Cauchy–Schwarz inequality gives

‖a · ∇(uI − uNGal)‖L1(Ω\Ω11) ≤ (Cε lnN)1/2‖a · ∇(uI − uNGal)‖L2(Ω\Ω11)

≤ C(lnN)1/2‖uI − uNGal‖1,ε.(6.41)

Substituting (6.39)–(6.41) into (6.38) and cancelling ‖uI−uNGal‖1,ε, we obtain

‖uI − uNGal‖1,ε ≤ C

[
‖u− uI‖1,ε +N‖u− uI‖L2(Ω11)

+ (lnN)1/2‖u− uI‖L∞(Ω\Ω11)

]
≤ CN−1 lnN

by (6.37). Now invoke (6.37b) and a triangle inequality to complete the
proof. �

The bound of Theorem 6.36 is sharpened to O
(
N−2 ln2N

)
in [Lin00,

Zha03], but there are some differences in the FEM and norms in these two
papers.

Despite these theoretical convergence results, the standard Galerkin
FEM on a Shishkin mesh is not a good numerical method in practice because
the discrete matrix is ill-conditioned and expensive to invert; see [LS01b].

Exercise 6.37. In the derivation of (6.39) in the proof of Theorem 6.36,
what goes wrong if one applies a Cauchy–Schwarz inequality to estimate(
uI − u, a · ∇(uI − uNGal)

)
on Ω \ Ω11, as we did on Ω11?
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Remark 6.38. For the reaction-diffusion problem discussed in Remark 6.7,
Liu et al. [LMSZ09, Theorem 3.1] derive a result analogous to Theorem 6.36
using the bounds described in Remark 4.18, and in [RS15b] a convergence
result on a Shishkin mesh is proved in a balanced norm.

6.6.2. SDFEM with bilinears. We consider the same problem as in sec-
tion 6.6.1, i.e., a problem posed on the unit square whose solution has two
exponential outflow boundary layers and a corner layer, but no characteristic
layers. For bilinears on a rectangular Shishkin mesh, it is shown in [ST03]
that ‖u − uSD‖0 ≤ C[εN−3/2 + N−2(lnN)2], which under the reasonable

additional assumption that ε ≤ N−1/2 yields ‖u − uSD‖0 ≤ CN−2(lnN)2

(optimal up to the lnN factor). This result relies on certain interpolation
error identities [Lin91] that enable the analysis to be carried out separately
on each mesh rectangle and yield a higher order of convergence than a direct
application of bounds like (6.36).

To communicate the complexity of the analysis, we shall list only the
main steps without detailed proofs, which can be found in [ST03].

Recall the decomposition u = S + E21 + E12 + E22 stated in (4.14).

Using (6.36) and some other ideas, one can show the following result.

Lemma 6.39. Let SI and EI denote the piecewise bilinear interpolants of
S and E, respectively, on the Shishkin mesh ΩN

S , where the function E can
be any one of E1, E2, or E12. Then there exists a constant C such that the
following interpolation error estimates hold true:

‖S − SI‖0,Ω ≤ C N−2,(6.42a)

‖E‖0,Ω11 ≤ C ε1/2N−5/2,(6.42b)

ε‖ΔE‖L1(Ω11) + ‖∇E‖L1(Ω11) ≤ C N−5/2,(6.42c)

N−1‖∇EI‖0,Ω11 + ‖EI‖0,Ω11 ≤ C
(
ε1/2N−5/2 +N−3

)
,(6.42d)

‖E − EI‖0,Ω ≤ C(N− lnN)2.(6.42e)

Exercise 6.40. Prove the inequalities (6.42) for the case E = E1. Hints.
Inequality (6.42a) is a standard classical result. The estimates (6.42b)
and (6.42c) are straightforward to derive using the bounds on E1 from (4.14).
Inequality (6.42d) is more difficult to prove. To obtain (6.42e), use (6.42b)
and (6.42d) for ‖E − EI‖0,Ω11 and some calculations invoking (6.36) for
‖E −EI‖0,Ω\Ω11

.
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Write the dimensions of each mesh rectangle τ as hx,τ by hy,τ , and denote
its barycentre by (xτ , yτ ). Set

Gτ (x) =
1

2

[
(x− xτ )

2 −
(
hx,τ
2

)2
]
, Fτ (y) =

1

2

[
(y − yτ )

2 −
(
hy,τ
2

)2
]
.

Denote the east, north, west, and south edges of τ by li,τ for i = 1, . . . , 4,
respectively.

Next, we state the Lin identities for bilinear interpolants. Each one can
be proved by starting from the right-hand side of the identity: Since (wI)xx,
(wI)yy and all third-order derivatives of wI vanish, these terms can be intro-
duced at appropriate places in the right-hand side. Then one integrates by
parts and takes into consideration the definitions of Fτ and Gτ . These iden-
tities appeared first in [Lin91]; for details of their proof a more convenient
source is [Zha03].

Lemma 6.41. Let τ be a mesh rectangle. Let w ∈ H3(τ), and let wI ∈
Q1(τ) be its bilinear interpolant. Then for each vN ∈ Q1(τ) one has

∫
τ
(w − wI)xv

N
x dx dy =

∫
τ
wxyy

(
Fτv

N
x − 1

3

(
F 2
τ

)′
vNxy

)
dxdy,∫

τ
(w − wI)xv

N
y dx dy =

∫
τ

(
Fτwxyy(v

N
y −G′

τv
N
xy) +Gτwxxyv

N
x

)
dx dy

−
∫
l2,τ

Gτwxxv
N
x dx+

∫
l4,τ

Gτwxxv
N
x dx,∫

τ
(w − wI)yv

N
x dx dy =

∫
τ

(
Gτwxxy(v

N
x − F ′

τv
N
xy) + Fτwxyyv

N
y

)
dx dy

−
∫
l1,τ

Fτwyyv
N
y dy +

∫
l3,τ

Fτwyyv
N
y dy,∫

τ
(w − wI)yv

N
y dxdy =

∫
τ
wxxy

(
Gτv

N
y − 1

3

(
G2

τ

)′
vNxy

)
dx dy.

Remark 6.42. For a way of avoiding the derivation of ingenious identities
like those of Lemma 6.41 yet still obtaining optimal-order error bounds,
see [DLP12].

With the help of Lemma 6.41, some detailed calculations yield the next
lemma (here we use the standard Sobolev space notation Wm,p).

Lemma 6.43. Let ϕ ∈ W 1,∞(Ω) satisfy ‖ϕ‖W 1,∞ ≤ C for some constant C.
Let wI ∈ SN be the piecewise bilinear interpolant of w ∈ H3(Ω) ∩W 2,∞(Ω)
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on the Shishkin mesh ΩN
S . Then for all vN ∈ Q1(K) we have∣∣∣∣

∫
Ω11

ϕ(w − wI)xv
N
x dx dy

∣∣∣∣ ≤ C N−2 (|w|2 + |w|3) ‖vNx ‖0,∣∣∣∣
∫
Ω11

ϕ(w − wI)xv
N
y dx dy

∣∣∣∣ ≤ C N−2 (|w|W 2,∞ + ‖w‖3)
(
‖vNy ‖0 + ‖vNx ‖0

)
+ Cε1/2N−2(lnN)1/2|w|W 2,∞‖vNxy‖0,∣∣∣∣

∫
Ω11

ϕ(w − wI)yv
N
x dx dy

∣∣∣∣ ≤ C N−2 (|w|W 2,∞ + ‖w‖3)
(
‖vNx ‖0 + ‖vNy ‖0

)
+ Cε1/2N−2(lnN)1/2|w|W 2,∞‖vNxy‖0,∣∣∣∣

∫
Ω11

ϕ(w − wI)yv
N
y dx dy

∣∣∣∣ ≤ C N−2 (|w|2 + |w|3) ‖vNy ‖0.

Exercise 6.44. For simplicity take ϕ ≡ 1. Use Lemma 6.41 to prove that∣∣∣∣
∫
Ω11

(w − wI)xv
N
x dx dy

∣∣∣∣ ≤ C N−2 (|w|2 + |w|3) ‖vNx ‖0.

Show that a direct application of the Cauchy–Schwarz inequality, without
appealing to Lemma 6.41, yields only an O

(
N−1

)
bound:∣∣∣∣

∫
Ω11

(w − wI)xv
N
x dx dy

∣∣∣∣ ≤ C N−1|w|2 ‖vNx ‖0.

Choose the piecewise-constant streamline diffusion parameter (cf. (6.25))
as follows:

δτ =

⎧⎨
⎩

N−1 if τ ⊂ Ω11 and ε ≤ N−1,
ε−1N−2 if τ ⊂ Ω11 and ε > N−1,
0 otherwise.

Earlier results are used to derive the next two lemmas.

Lemma 6.45. For all vN ∈ SN , we have∣∣B(u− uI , vN )
∣∣ ≤ C

[
εN−3/2 + (N−1 lnN)2

]
‖vN‖1,ε.

Write BSD(·, ·) = B(·, ·) +Bstab(·, ·) as in (6.17).

Lemma 6.46. For some constant C one has∣∣Bstab(u− uI , vN )
∣∣ ≤ CN−2(lnN)1/2‖vN‖SD ∀vN ∈ SN .

Exercise 6.47. Use Lemma 6.39 and an inverse inequality to prove∣∣Bstab(E1 − EI
1 , v

N )
∣∣ ≤ CN−2‖vN‖SD ∀vN ∈ SN .

It is now straightforward to prove our main result.
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Theorem 6.48. The piecewise bilinear SDFEM solution uNSD satisfies

‖uNSD − uI‖SD ≤ C
[
εN−3/2 + (N−1 lnN)2

]
.

Proof. By Lemma 6.15 (recall Remark 6.16) and (6.18), we have

1

2
‖uNSD − uI‖2SD ≤ BSD(u

N
SD − uI , uNSD − uI)

= BSD(u− uI , uNSD − uI)

= B(u− uI , uNSD − uI) +Bstab(u− uI , uNSD − uI).

Now invoke Lemmas 6.45 and 6.46 to complete the proof. �

Remark 6.49. While Theorem 6.48 was proved in 2003 in [ST03], only
recently in [ZLY16] was an almost-optimal L2 result similar to this the-
orem obtained for piecewise linears in the SDFEM applied to the same
convection-diffusion problem on a triangular Shishkin mesh. The main dif-
ference in the analysis in this case is that for linears on triangles there are no
interpolation error identities on an individual triangle that are analogous to
those of Lemma 6.41 for bilinears on a rectangle. Instead, one must group
triangles in pairs to obtain an analogue of Lemma 6.41. In [ZLY16] some
new interpolation error results for linears are derived, and it is then shown
that

‖u− uSD‖0 ≤ C[ε1/2N−3/2 +N−2(lnN)5/2],

which, under the reasonable additional assumption that ε ≤ N−1, yields
‖u− uSD‖0 ≤ CN−2(lnN)5/2.

Remark 6.50. In [LS01b] numerical experiments compare several methods
on the same Shishkin mesh for our usual test problem on the unit square
whose solution has exponential outflow layers along x = 1 and y = 1 and can
be decomposed as in (4.14). The methods considered are central differencing,
simple upwinding, the hybrid difference scheme of [LS99], defect correction
using simple upwinding and central differencing (see Remark 5.4), linear
and bilinear Galerkin FEMs (see section 6.6.1 and [Zha03]), and the linear
and bilinear SDFEM (see section 6.6.2). Graphs of the computed solutions,
errors, and convergence rates in the discrete L∞(Ω) norm are given, and
known theoretical convergence results for the various methods are listed. It
is concluded that, taking into account any difficulties that arise in solving the
discrete linear systems, the methods that performed best for this problem
are the defect correction method and the two SDFEMs, and that inside the
layers bilinears are more accurate than linears.

In a similar spirit, the more recent paper [ACF+11] compares numer-
ically several stabilized FEMs that are used to solve the Hemker problem
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described in section 4.2.2. The conclusions/recommendations of this useful
paper are lengthy, and we do not reproduce them here.

Remark 6.51 (Supercloseness and postprocessing). Theorem 6.48 implies
that the piecewise bilinear solution uNSD on a Shishkin mesh satisfies

‖uNSD − uI‖1,ε ≤ ‖uNSD − uI‖SD ≤ C
[
εN−3/2 + (N−1 lnN)2

]
,

while (6.37b) then implies that

‖uNSD − u‖1,ε ≤ ‖uNSD − uI‖1,ε + ‖uI − u‖1,ε ≤ CN−1 lnN.

This phenomenon, where ‖uNSD−uI‖ � ‖uNSD−u‖ in some norm ‖·‖, is called
supercloseness of uNSD. On a Shishkin mesh it can be exploited easily and
cheaply to get a more accurate approximation of u by postprocessing uNSD:
form a macromesh by taking groups of four neighbouring mesh rectangles
which each have nine nodes of the original mesh, construct the piecewise
biquadratic interpolant PuNSD of uNSD at these nodes, and then

‖PuNSD − u‖1,ε ≤ C
[
εN−3/2 + (N−1 lnN)2

]
;

see [ST03] for more details.

6.7. Discontinuous Galerkin finite element method

In recent years, several versions of the discontinuous Galerkin FEM
(dGFEM) have attracted a great deal of attention in the research litera-
ture. Like the SDFEM, the dGFEM achieves stability by a judicious choice
of bilinear form, but the details of the construction are very different from
section 6.4.

The method’s name comes from its use of a standard piecewise polyno-
mial trial space that is not required to be continuous across element bound-
aries. This local nature means the method is more readily parallelizable
than (say) the SDFEM, and it clearly permits the use of polynomials of dif-
ferent degrees on different elements, which can be exploited to gain increased
accuracy when the problem is quite smooth on only part of the domain—
as is usually the case with convection-diffusion problems. A drawback is
the much larger number of degrees of freedom compared with finite element
spaces that lie in C(Ω).

Methods of this type were first introduced in the 1970s, and today there
are several prominent variants. Arnold et al. [ABCM02] consider the prob-
lem −Δu = f on Ω with u = 0 on ∂Ω and show that nine distinct versions
of the dGFEM can be placed in the framework of a mixed-method weak
formulation. They go on to analyse the stability of these methods, but this
is of limited value in the context of convection-diffusion problems where
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the Laplacian is multiplied by a small parameter. This paper also gives an
account of the historical development of dGFEMs that includes methods
specifically designed for convection-diffusion problems.

To introduce the stabilization idea used in most dGFEMs, we describe
an older and simpler numerical technique known as Nitsche’s method, which
imposes boundary conditions only weakly.

Let Ω ⊂ R2 be a bounded domain with n the outward-pointing unit
normal to ∂Ω.

Example 6.52 (Nitsche’s method). Consider a Dirichlet boundary value
problem based on Poisson’s equation,

(6.43) −Δu = f in Ω, u = g on ∂Ω.

As usual in FEMs, we convert the differential equation to a weak form by
multiplying it by an arbitrary test function v ∈ H1(Ω) and then integrating
by parts:

(f, v) = (−Δu, v) = (∇u,∇v)−
∫
∂Ω

(∇u · n)v

= (∇u,∇v)−
∫
∂Ω

(∇u · n)v −
∫
∂Ω

(∇v · n)(u− g),(6.44)

where the last integral adds zero to the calculation because u = g on ∂Ω. It
was introduced because (6.44) can now be written as

B1(u, v) := (∇u,∇v)−
∫
∂Ω

(∇u ·n)v−
∫
∂Ω

(∇v ·n)u = (f, v)−
∫
∂Ω

(∇v ·n)g

for all v ∈ H1(Ω), where B1(·, ·) is a symmetric bilinear form.

But we cannot prove that B1(·, ·) is coercive over H1(Ω) × H1(Ω). To
obtain this very desirable property, we add another term to the bilinear
form—while maintaining its symmetry. For arbitrary μ > 0, add the term

μ

∫
∂Ω

(u− g)v

to (6.44). This equation can then be rearranged as

B2(u, v) := (∇u,∇v)−
∫
∂Ω

(∇u · n)v −
∫
∂Ω

(∇v · n)u+ μ

∫
∂Ω

uv

= (f, v)−
∫
∂Ω

(∇v · n)g + μ

∫
∂Ω

gv

for all v ∈ H1(Ω). Replacing u, v by uh, vh from a standard piecewise poly-
nomial finite element space Sh ⊂ H1(Ω) on a quasi-uniform mesh of width h,
one can show (cf. [Sch08]) that if μ = Ch−1 for sufficiently large C, then
B2(·, ·) is coercive over Sh × Sh with respect to a certain mesh-dependent
norm.
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Then B2 is symmetric, coercive and by its construction enjoys the Galer-
kin orthogonality property B(u− uh, vh) = 0 for all vh ∈ Sh.

The message of Example 6.52 is that one can choose to impose boundary
conditions weakly and still obtain a symmetric and coercive bilinear form,
provided one is willing to include a user-chosen penalty parameter (viz., μ
above) in the weak formulation of the problem.

Exercise 6.53. Prove the assertion of Example 6.52 that if μ = Ch−1 for
sufficiently large C, then B2(·, ·) is coercive over Sh × Sh with respect to
a certain mesh-dependent norm. You will need a standard trace inequality
that is not stated in our book.

Remark 6.54. In [Sch08] a related method for convection-diffusion prob-
lems is investigated. A nonsymmetric version of Nitsche’s method without
any penalty parameter is analysed in [Bur12].

Given the diversity of methods described as dGFEMs, we shall not at-
tempt to give a thorough survey of this area. Instead we concentrate on one
variant, and the references appearing in this section will assist the reader
who wishes to broaden her or his knowledge of the dGFEM.

Thus we consider in detail the version of the nonsymmetric interior
penalty dGFEM (NIPD) from [HSS02]; related methods appear in, e.g.,
[OBB98] and [RWG01].

Assume that Ω is polygonal. Let T be a partition of Ω into elements
κ (e.g., triangles or rectangles). In [HSS02] up to one hanging node is
permitted for each κ, but for simplicity we shall assume that our partition
has no hanging nodes. Assume also that each κ ∈ T is an affine image of a
fixed master element κ̂, i.e., that κ = Fκ(κ̂) where κ̂ is either the open unit
simplex or the open unit square in R2. For each nonnegative integer k, let
Pk(κ̂) denote the set of polynomials of total degree k on κ̂. (If κ̂ is the unit
square, one can also considerQk(κ̂), the set of all tensor-product polynomials
on κ̂ of degree k in each coordinate direction.) For each κ ∈ T write pκ for
the local polynomial degree. Set p = {pκ : κ ∈ T } and F = {Fκ : κ ∈ T }
and define the finite element space

Sp(Ω, T ,F) = {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ(κ̂)},

where R is either P or Q.

For s = 0, 1 define the broken Sobolev spaces

Hs(Ω, T ) = {v ∈ L2(Ω) : v|κ ∈ Hs(κ) ∀κ ∈ T }.
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Let ∂κ denote the boundary of κ for each κ ∈ T . Define the inflow and
outflow parts of ∂κ by

∂−κ = {(x, y) ∈ ∂κ : a(x, y) · nκ(x, y) < 0},
∂+κ = {(x, y) ∈ ∂κ : a(x, y) · nκ(x, y) ≥ 0},

respectively, where nκ(x, y) denotes the outward-pointing unit normal to ∂κ
at (x, y) ∈ ∂κ.

Let v ∈ H1(Ω, T ). For each κ ∈ T , denote by v+κ the inner trace of v|κ
on ∂κ. If ∂−κ\∂Ω is nonempty, then for almost every point (x, y) ∈ ∂−κ\∂Ω
there exists a unique κ′ ∈ T (which depends on (x, y)) such that x ∈ ∂+κ′

and κ′ ∩ (∂−κ \ ∂Ω) has nonzero one-dimensional measure, and we define
the outer trace v−κ of v on ∂−κ \ ∂Ω relative to κ to be the inner trace v+κ′

relative to κ′. Then define the jump of v across ∂−κ\∂Ω by �v�κ = v+κ −v−κ .

We shall drop the subscript κ from the above notation when it is clear
from the context what is intended.

Let Eint be the set of all open one-dimensional edges of the partition T
that lie in Ω. Set Γint = {x ∈ Ω : x ∈ e for some e ∈ Eint}. Numbering
the elements κ consecutively, for each e ∈ Eint there exist indices i and j
such that i > j and the elements κi and κj share the interface e. Define
the (element-numbering-dependent) jump of v ∈ H1(Ω, T ) across e and the
mean value of v on e by

[v]e = v|∂κi∩e − v|∂κj∩e and 〈v〉e =
1

2

(
v|∂κi∩e + v|∂κj∩e

)
,

respectively. Furthermore, for each e ∈ Eint let nij denote the unit vector
that is normal to e and pointing from κi to κj ; if e ⊂ ∂Ω, take nij = n.

The bilinear form associated with the NIPD for (4.1a) with u ≡ 0 on ∂Ω
is

BDG(v, w) =
∑
κ∈T

(
ε

∫
κ
∇v · ∇w +

∫
κ
(a · ∇v + bv)w

−
∫
∂−κ∩∂−Ω

(a · nκ)v
+w+ −

∫
∂−κ\∂Ω

(a · nκ)�v�w+

)

+ ε

∫
∂Ω

(v(∇w · n)− (∇v · n)w) +
∫
∂Ω

σvw

+ ε

∫
Γint

([v]〈∇w · n〉 − 〈∇v · n〉[w]) +
∫
Γint

σ[v][w],

for all v, w ∈ H1(Ω, T ). Here σ, the user-chosen nonnegative discontinuity-
penalization parameter, is defined by

σ|e = σe for each e ∈ Eint ∪ ∂Ω.
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When solving (4.1), Houston et al. [HSS02] choose σe = O (ε/he) where he
is the length of edge e.

The NIPD method is then as follows: Find udG ∈ Sp(Ω, T ,F) such that

(6.45) B(udG, w
N ) =

∑
κ∈T

∫
κ
fwN for all wN ∈ Sp(Ω, T ,F).

Existence and uniqueness of a solution to (6.45) are shown in [HSS02].

Assuming that u ∈ H2(Ω, T ) and ∇u is continuous across each edge
e ∈ Eint, one can deduce the Galerkin orthogonality property

BdG(u− udG, w
N ) = 0 ∀wN ∈ Sp(Ω, T ,F).

For all v ∈ H2(Ω, T ) define the norm ‖ · ‖dG by ‖v||2dG = BdG(v, v). Setting
(v, w)e =

∫
e |a · nκ|vw for each e ⊂ ∂κ and ‖v‖2e = (v, v)e, after some

manipulation one gets

‖v‖2dG =
∑
κ∈T

(
ε‖∇v‖20,κ + ‖c0v‖20,κ

)
+

∫
∂Ω

σv2 +

∫
Γint

σ[v]2

+
1

2

∑
κ∈T

(
‖v+‖2∂−κ∩∂Ω + ‖v+ − v−‖2∂−κ\∂Ω + ‖v+‖2∂+κ∩∂Ω

)
,

where ‖·‖0,κ is the L2(κ) norm and we set c0(x, y)=
√
b(x, y)− diva(x, y)/2 ;

by (6.9) the function c0 is well-defined. Clearly, ‖·‖dG is stronger than ‖·‖1,ε.
Now [HSS02] write u − udG = (u − Πu) + (Πu − udG) where Π is the

orthogonal projector in L2 into Sp(Ω, T ,F). From Galerkin orthogonality
one has

(6.46) ‖Πu−udG‖2dG = BdG(Πu−udG,Πu−udG) = BdG(Πu−u,Πu−udG),

and, under the assumption that a · ∇wN |κ lies in Sp(Ω, T ,F) for all wN ∈
Sp(Ω, T ,F), some analysis of the right-hand side of (6.46) enables
‖Πu − udG‖dG to be estimated in terms of various norms of u − Πu. In-
voking the triangle inequality ‖u − udG‖dG ≤ ‖u − Πu‖dG + ‖Πu − udG‖dG
then leads to a bound on ‖u − udG‖dG. In the particular case where the
mesh elements are rectangles, piecewise polynomials of degree k are used,
the mesh diameter is h, and the solution u lies in Hk+1(Ω), the bound
becomes

‖u− udG‖dG ≤ C(ε1/2hk + hk+1/2)‖u‖Hk+1(Ω), where C = C(k).

Note that the right-hand side here depends on a Sobolev norm of u that is
typically O

(
ε−k−1/2

)
. It may be possible to use cut-off functions to localize

this result away from layers, removing this undesirable feature.

The above analysis from [HSS02] assumes that the mesh is shape-
regular, so it excludes the long thin elements present in any good mesh
that is specifically designed to improve the behaviour of the method inside
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layers. Roos and Zarin [RZ03] applied this dGFEM to a problem on the
unit square that has exponential layers along x = 1 and y = 1 and no other
layers. Working with piecewise bilinears on a rectangular Shishkin mesh like
that of Figure 5.2 with N mesh intervals in each coordinate direction, they
adapt the analysis of [HSS02] to this situation (which entails a different
choice for σe on part of the mesh) and prove that

(6.47) ‖u− udG‖dG ≤ CN−1(lnN)3/2.

A related paper [ZR05] considers a problem similar to Example 4.2 and,
using a Shishkin mesh similar to the one in Figure 5.3 with N mesh intervals
in each coordinate direction, again obtains the bound (6.47).

We remind the reader that there is no universal agreement on a “best”
form of the dGFEM. For example, in [GK03] a symmetric version of our
bilinear form BdG(v, w) is considered; it is obtained by changing the signs
of the terms ε

∫
∂Ω v(∇w · nij) and ε

∫
Γint

[v]〈∇w · nij〉.
For further work in this area see [DPE12,ZXZ09,Roo12] and their

references, and the discussion in [RST08, Section III. 3.4.3].

6.8. Continuous interior penalty (CIP) method

The continuous interior penalty (CIP) method is a general technique for
the stabilization of finite element methods, irrespective of the cause of the
instability. It dates from 1976 [DD76], and it was applied to convection-
dominated problems by Burman and others in several papers, including
[BE06,BGL09,BH04,BS16,Bur05,Bur12]. The analyses in these pa-
pers are for shape-regular meshes. Here we shall discuss the analysis of a
CIP method on a Shishkin mesh (which of course is not shape-regular) for
the problem of section 6.6, which is posed on the unit square and whose so-
lution exhibits exponential boundary layers along the sides x = 1 and y = 1
of the domain. Our presentation is based on [LSZ].

Thus, consider the problem

−εΔu+ a(x, y) · ∇u+ b(x, y)u = f(x, y) on Ω = (0, 1)2,(6.48a)

u = 0 on ∂Ω,(6.48b)

with a = (a1, a2) ≥ (α1, α2) > (0, 0). Assume that the decomposition (4.14)
of the solution u is valid.

Without loss of generality (recall Remark 4.15) one can also assume that

(6.49) b(x, y)− diva(x, y)

2
≥ C5 > 0 on Ω̄ for some constant C5.
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We shall use the rectangular Shishkin mesh of section 6.6 (see Figure 6.4
on p. 118) with the mesh transition points

λx =
mε

α1
lnN, λy =

mε

α2
lnN,

where the user-chosen constant m satisfies m ≥ 5/2 and there are N mesh
intervals in each cooordinate direction. Our finite element space SN ⊂
H1

0 (Ω) comprises globally continuous piecewise bilinears on this mesh. Our
discussion will employ the regions Ω11,Ω12,Ω21, and Ω22 of Figure 6.4.

Recall the standard Galerkin bilinear form B(·, ·) of section 6.6.1. The
CIP method modifies this bilinear form by adding terms that penalize jumps
in derivatives of the computed solution across element edges; in this way it
inhibits oscillations. It is defined as follows: Find uN ∈ SN such that

a(uN , vN ) = (f, vN ) ∀vN ∈ SN ,(6.50)

where

a(uN , vN ) := B(uN , vN ) + J(uN , vN )

with

J(uN , vN ) :=
∑

e⊂Ω◦
11

γN−2

∫
e
[∇uN ] · [∇vN ] ds,

where e is an edge of a mesh rectangle, Ω◦
11 denotes the interior of Ω11, the

positive penalty parameter γ is chosen by the user (the numerical experi-
ments of [LSZ] use γ = 1.0), and the jump [q] of a piecewise continuous
function q over an edge e is defined, for each x ∈ e, by

[q](x) =

{
lim
t→0+

[q(x+ tne)− q(x− tne)] if e �⊂ ∂Ω,

0 if e ⊂ ∂Ω,

where we associate a unique unit normal vector ne with e. In (6.50) no
stabilization is applied where the mesh is fine because this seems to give
the best numerical results; see [Fra08], where several variants of the CIP
method are considered.

The stabilizing mechanism of the term J(·, ·) in (6.50) differs from up-
wind stabilizations such as SDFEM.

The natural norm associated with a(·, ·) is

(6.51) ‖w‖CIP :=
{
ε|w|21 + C5‖w‖2 + J(w,w)

}1/2
,

which is well-defined for those w ∈ H1(Ω) for which J(w,w) is defined.
Using (6.49), it is easy to derive the coercivity inequality

(6.52) a(vN , vN ) ≥ ‖vN‖2CIP ∀vN ∈ SN .
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It follows that uN is well-defined by (6.50).

The regularity of the true solution u that is stated in (4.14) shows that
∇u has no jumps in Ω, so J(u, vN ) = 0 for all vN ∈ SN . Thus (6.48)
and (6.50) give the Galerkin orthogonality property

(6.53) a(u− uN , vN ) = 0 ∀vN ∈ SN .

The error analysis of stabilized FEMs for convection-dominated prob-
lems often seems to work best when carried out in the framework of the
streamline diffusion norm ‖ · ‖SD, even if at first sight the FEM has no
apparent connection with the SDFEM. For example, this is true of local
projection stabilization; see [KT11]. Here also we shall make use of the
SD norm even though the CIP method seems very different from the SD-
FEM.

Remark 6.55 (The relationship between the CIP and SD norms). An inves-
tigation of the exact relationship between ‖ · ‖CIP and ‖ · ‖SD for continuous
piecewise linears on uniform meshes of width h in one dimension is carried
out in [LSZ, Section 4]. The norms are defined as

‖w‖SD :=
{
ε|w|21 + ‖w‖20 + h|w|21

}1/2
and

‖w‖CIP :=

{
ε|w|21 + ‖w‖20 + h2

M−1∑
i=1

([w′]|xi)
2

}1/2

,

where the uniform mesh is x0 < x1 < · · · < xM , with h = 1/M . Let WM
0 be

the space of globally continuous piecewise linear functions defined on this
mesh that vanish at x0 and xM . It is shown in [LSZ] that if ε ≤ h, then

(6.54) ‖wM‖CIP ≤ 2‖wM‖SD ≤ CM1/4‖wM‖CIP ∀wM ∈ WM
0 ,

where C is a constant independent of M and wM ; moreover, a carefully
constructed example demonstrates that the factorM1/4 here is needed. Thus
in one dimension the CIP norm is in general strictly weaker than the SD
norm, and one can expect the same to be true in two dimensions.

Exercise 6.56. Prove the first inequality in (6.54). (It follows easily from
the definitions of the norms; one does not need to use ε ≤ h.)

Exercise 6.57. The aim of this exercise is to prove the second inequality
in (6.54). First show by a direct calculation that

h

6

M−1∑
i=1

w2(xi) ≤ ‖w‖20 ≤ h
M−1∑
i=1

w2(xi) ∀w ∈ WM
0 .
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Use this inequality, the fact that w′ is constant on each mesh interval, and
st ≤ (s2 + t2)/2 to prove that

h|w|21 ≤ 6h−1/2

[
‖w‖20 +

M−1∑
i=1

h2
(
[w′]|xi

)2] ∀w ∈ WM
0 .

Combine this inequality with ε ≤ h to obtain the second inequality in (6.54).

Exercise 6.58. This exercise will show, by constructing a specific example,
that the factor M1/4 in (6.54) cannot in general be eliminated. Define the
(M − 1)× (M − 1) tridiagonal matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let λk be any eigenvalue of Q. Let v = (v1,v2, . . . ,vM−1)
T be a corre-

sponding unit eigenvector of Q, so Qv = λkv and
∑M−1

i=1 v2i = 1. Define
v ∈ WM

0 by v(ti) = vi for i = 1, 2 . . . ,M − 1. By the first inequality in
Exercise 6.57 we have ‖v‖20 ≤ h.

Next, summation by parts gives

h|v|21 =
M∑
i=1

(vi − vi−1)
2 = −

M−1∑
i=1

vi(vi+1 − 2vi + vi−1) = v ·Qv = λk

and

h2
M−1∑
i=1

(
[v′]|ti

)2
=

M−1∑
i=1

(vi+1 − 2vi + vi−1)
2 = Qv ·Qv = λ2

k.

Deduce that

‖v‖2SD ≥ λk and ‖v‖2CIP ≤ h+
ελk

h
+ λ2

k.

We now choose a specific λk. Suppose that M ≥ 81. Show that
there exists an integer k∗ satisfying 1 ≤ k∗ ≤ M − 1 and

√
4/3M3/4 ≤

k∗ ≤
√

5/3M3/4. The eigenvalues of Q are λk = 2 − 2 cos(kπ/M) for
k = 1, 2, . . . ,M − 1. (Exercise. Find a source for this claim.) Show that

1− t2

2!
≤ cos t ≤ 1− t2

2!
+

t4

4!
for t ≥ 0,

and deduce that
π2

M1/2
≤ λk∗ ≤ 5π2

3M1/2
,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society.



6.8. Continuous interior penalty (CIP) method 135

and consequently (where v∗ ∈ WM
0 is associated with λk∗)

‖v∗‖2SD
‖v∗‖2CIP

≥ π2

M1/2
·
[
xM − x0

M
+

5π2εM1/2

3(xM − x0)
+

25π4

9M

]−1

≥ CM1/2

if ε ≤ M−3/2, where C is some positive constant.

Returning to our two-dimensional problem, define the streamline diffu-
sion norm by

‖v‖SD :=

⎧⎨
⎩ε|v|21 + ‖v‖20 +

∑
τ∈Ω11

N−1‖a · ∇v‖20,τ

⎫⎬
⎭

1/2

,

where we have imitated the construction of the CIP method by introducing
the streamline derivatives only on the coarse mesh Ω11.

Lemma 6.59. There exists a positive constant C such that

‖vN‖SD ≤ CN1/4‖vN‖CIP ∀vN ∈ SN .

In [LSZ] this two-dimensional analogue of the second inequality in (6.54)
is deduced from (6.54).

Next we prove a technical result for the term J(·, ·) in the CIP norm.
Set ej;i := {xi} × [yj , yj+1] and ei;j := [xi, xi+1]× {yj} for all i and j, and

Ex = {ej;i : 0 ≤ j < N/2, 1 ≤ i < N/2},
Ey = {ei;j : 0 ≤ i < N/2, 1 ≤ j < N/2}.

Thus Ex (Ey) denotes the set of all interior edges of the mesh that lies in
Ω11 and is perpendicular to the x-axis (to the y-axis). Each vNx (vNy ) is
continuous across each edge e ∈ Ey (e ∈ Ex), so

(
[∇uN ] · [∇vN ]

)
|e =

{(
[uNx ] · [vNx ]

)
|e ∀e ∈ Ex,(

[uNy ] · [vNy ]
)
|e ∀e ∈ Ey.

We therefore have

J(uN , vN ) =

(∑
e∈Ex

+
∑
e∈Ey

)
γN−2

∫
e
[∇uN ] · [∇vN ] ds

=
∑
e∈Ex

γN−2

∫
e
[uNx ][vNx ] ds+

∑
e∈Ey

γN−2

∫
e
[uNy ][vNy ] ds

=: Jx(u
N , vN ) + Jy(u

N , vN ).
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Lemma 6.60. Let uI ∈ SN be the piecewise bilinear nodal interpolant of the
solution u to (6.48). Then there exists a constant C, which is independent
of ε,N , and vN , such that

|J(u− uI , vN )| ≤ CN−7/4‖vN‖CIP ∀vN ∈ V N .

Proof. From above, J(u − uI , vN ) = Jx(u − uI , vN ) + Jy(u − uI , vN ). By
symmetry we need analyse only the term Jx(u − uI , vN ). Recalling the
decomposition of u in (4.14), one has

Jx(u− uI , vN ) = Jx(S − SI , vN ) + Jx(E2 −EI
2 , v

N )

+ Jx(E1 + E12 − EI
1 −EI

12, v
N )(6.55)

=: T0 + T1 + T2.

Here S1 is the nodal interpolant of S, EI
2 is the nodal interpolant of E2, etc.

Now

T0 = γN−2

N/2−1∑
i=1

N/2−1∑
j=0

∫
ej;i

[(S − SI)x] [v
N
x ] ds

= γN−2

N/2−1∑
j=0

N/2−1∑
i=1

∫
ej;i

(
−SI

x|τi,j + SI
x|τi−1,j

)
·
(
vNx |τi,j − vNx |τi−1,j

)
ds

= γN−2

N/2−1∑
j=0

∫ yj+1

yj

(
[−SI

x]|ej;N/2−1
· vNx |τN/2−1,j

+ [SI
x]|ej;1 · vNx |τ0,j

)
dy

+ γN−2

N/2−1∑
j=0

N/2−2∑
i=1

∫ yj+1

yj

(
SI
x|τi−1,j − 2SI

x|τi,j + SI
x|τi+1,j

)
· vNx |τi,j dy

=: I1 + I2.

As vNx |τi,j is a function of y only for each i and j, one has

(6.56)

∫ yj+1

yj

|vNx | dy =
1

xi+1 − xi

∫ xi+1

xi

∫ yj+1

yj

|vNx | dx dy.
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Set Ω̃11 :=
∑N/2−1

j=0 (τN/2−1,j ∪ τ0,j). The smoothness of S and (6.56) yield

|I1| ≤ CN−3

N/2−1∑
j=0

(∫ yj+1

yj

|(vNx |τN/2−1,j
)| dy +

∫ yj+1

yj

|(vNx |τ0,j )| dy
)

≤ CN−2

N/2−1∑
j=0

(
‖vNx ‖L1(τN/2−1,j)

+ ‖vNx ‖L1(τ0,j)

)
≤ CN−2 ·N−1/2‖vNx ‖Ω̃11

≤ CN−7/4‖vN‖CIP ,

(6.57)

where we used a Cauchy–Schwarz inequality and meas(Ω̃11) ≤ CN−1, then
invoked Lemma 6.59. Similarly, one has

|I2| ≤ CN−4

N/2−1∑
j=0

N/2−2∑
i=1

∫ yj+1

yj

∣∣(vNx |τi,j )
∣∣ dy

≤ CN−3

N/2−1∑
j=0

N/2−2∑
i=1

∫ xi+1

xi

∫ yj+1

yj

∣∣vNx ∣∣ dx dy
≤ CN−3‖vNx ‖L1(Ω11)

≤ CN−2‖vN‖L1(Ω11)

≤ CN−2‖vN‖CIP ,

(6.58)

where an inverse estimate was used. From (6.57) and (6.58) we obtain

(6.59) |T0| ≤ CN−7/4‖vN‖CIP .

The x-derivatives of E2 are bounded independently of ε by (4.14), so we
can analyse T1 similarly to T0 and get

(6.60) |T1| ≤ CN−5/2‖vN‖CIP

since m ≥ 5/2 in our choice of the Shishkin mesh transition points.

Next, inverse estimates and (4.14) yield∥∥[(EI
1 + EI

12)x]
∥∥
L∞(ej;i)

≤ C‖(EI
1 + EI

12)x‖L∞(τi−1,j∪τi,j)

≤ CN‖EI
1 + EI

12‖L∞(τi−1,j∪τi,j)

≤ CN−3/2,
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again because m ≥ 5/2. This bound and (6.56) give us

|T2| ≤ γN−2

N/2−1∑
i=1

N/2−1∑
j=0

‖[(EI
1 + EI

12)x]‖L∞(ej;i)‖[v
N
x ]‖L1(ej;i)

≤ CN−2

N/2−1∑
i=1

N/2−1∑
j=0

N−3/2 ·N‖vNx ‖L1(τi−1,j∪τi,j)

≤ CN−5/2‖vNx ‖L1(Ω11)

≤ CN−2 ·N−1/2‖vNx ‖Ω11

≤ CN−7/4‖vN‖CIP

(6.61)

by a Cauchy–Schwarz inequality and Lemma 6.59.

Substituting (6.59)–(6.61) into (6.55), we obtain |Jx(u − uI , vN )| ≤
CN−7/4‖vN‖CIP , as desired. �

The main convergence result for our CIP can now be derived.

Theorem 6.61. Let uI ∈ SN be the bilinear interpolant to the solution u
of (6.48), and let uN ∈ SN be the CIP solution of (6.50). Then there exists
a constant C such that

‖uI − uN‖CIP ≤ C(N−7/4 + εN−3/2).

Proof. Coercivity (6.52) and Galerkin orthogonality (6.53) yield

‖uI − uN‖2CIP ≤ a(uI − uN , uI − uN )

= a(uI − u, uI − uN )

= B(uI − u, uI − uN ) + J(uI − u, uI − uN ).

In [Zha03] it is proved that

|B(u− uI , vN )| ≤ C(N−2 ln2N + εN−3/2)‖vN‖CIP for all vN ∈ SN .

Taking vN = uI − uN in this inequality and in Lemma 6.60, the result
follows. �

From Theorem 6.61 it is easy to obtain an estimate for the error u−uN .

Corollary 6.62. Let uN ∈ SN be the solution of (6.50). Then there exists
a constant C such that

‖u− uN‖0 ≤ C
[
N−7/4 + εN−3/2 + ε1/2(N−1 lnN)2

]
.

Proof. Theorem 6.61 clearly implies that ‖uI−uN‖0 ≤ C(N−7/4+εN−3/2).

But ‖u− uI0‖ ≤ C[N−2 + ε1/2(N−1 lnN)2] by [RST08, Lemma 3.107]. Use
a triangle inequality to finish the proof. �
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Remark 6.63 (Supercloseness and postprocessing). The definition of the
CIP norm implies that

‖u− uN‖CIP ≥
[
ε|u− uN |21 + C5‖u− uN‖2

]1/2
.

But it is well known that on our Shishkin mesh the bound

(6.62)
[
ε|u− uN |21 + C5‖u− uN‖2

]1/2 ≤ CN−1 lnN

of [RST08, Lemma 3.107] is sharp. Consequently, ‖u−uN‖CIP ≤CN−1 lnN
is the best possible bound, which implies that the bound of Theorem 6.61
is a supercloseness result, i.e., the computed solution uN approximates a
certain finite-dimensional interpolant of the true solution more accurately
(i.e., with a higher order of convergence) than it approximates the solution u
itself. Recall Remark 6.51. As described in that remark, one can exploit
the supercloseness property by postprocessing the solution in a simple pro-
cedure that produces a piecewise quadratic solution PuN on our mesh with
the property(

ε|u− PuN |21 + ‖u− PuN‖20
)1/2 ≤ C(εN−3/2 +N−7/4).

In this inequality we are measuring the error between PuN and the true
solution u, which is more satisfactory than Theorem 6.61 where the error
between uN and the interpolant uI was estimated.

Exercise 6.64. Prove that the bound (6.62) is sharp by considering exam-
ples of solutions u.

In the interesting paper [Sch08], Schieweck discusses and analyses the
effect of imposing boundary conditions weakly in the CIP method, using a
variation of the approach of Nitsche (Example 6.52).

6.9. Adaptive methods

Adaptive FEMs compute a solution to a boundary value problem on some
conventional (e.g., equidistant) mesh using some stable method such as SD-
FEM, then use this solution to compute a posteriori some local error esti-
mator that gives guidance on where one should refine or coarsen the mesh
to obtain a mesh better suited to the boundary value problem. On this new
mesh one then computes a fresh solution to the problem, then the mesh
is again modified based on the local error estimator. The process is con-
tinued iteratively until some stopping criterion is reached. See [AO00] or
[BS08, Chap. 9] for a more precise description.

There is perhaps a general consensus that in the long run adaptive
methods will provide the most satisfactory approach to solving convection-
diffusion problems, but today their behaviour when applied to such problems
is still poorly understood, despite many published numerical experiments.
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John [Joh00] gives numerical examples of how apparently reasonable error
estimators can yield inaccurate solutions to convection-diffusion problems.

A difficulty with the theory of a posteriori error estimators for convec-
tion-diffusion problems is that published inequalities relating the estimator
to the true error frequently contain multiplicative factors that depend badly
on the small diffusion parameter ε. This seriously undermines the validity of
the estimator. Below we shall confine our discussion to a few ε-independent
results that have been obtained.

Remark 6.65 (Adaptive finite difference methods). For the one-dimen-
sional problem (2.14), an adaptive-mesh algorithm that is based on arc-
length equidistribution (where mesh points are moved but no points are
created or deleted) is analysed by [KS01], using earlier a posteriori bounds
from [Kop01]. It is shown that, starting from an equidistant mesh with
N subintervals, after O (ln(1/ε)/(lnN)) iterations, one obtains a computed
solution uN that resolves the layer with, moreover, |u(xi) − uNi | ≤ CN−1

for all i. The underlying numerical method is simple upwinding so this
is a finite difference approach, but we include it here since it is a clear
convergence result for an adaptive method and few such results exist for
convection-diffusion problems. It seems difficult to extend this type of result
to two-dimensional problems. A more leisurely and readable exposition of
this material is given in [Kop07a]. Adaptive methods for finite difference
methods applied to convection diffusion have been examined by Kopteva
et al. [FK11,LK10].

In [San01] the residual-free bubble FEM is considered; this method is
related to the SDFEM [BMS00]. An error estimator based on element
residuals and jumps in the normal derivative of the solution across edges
is shown to be robust for (4.1); i.e., the global value of the estimator is
equivalent to the true error up to a constant factor that is independent of
ε, but the norm in which the true error is measured is

w �→ ε|w|H1(Ω) + ‖a · ∇w‖H−1(Ω),

which is weak—the factor multiplying | · |H1(Ω) is ε, not the more natural

ε1/2 that appears in the weighted energy norm ‖ · ‖1,ε of section 4.2.

The dual-weighted-residualmethod for goal-oriented error estimation has
been successfully applied to convection-diffusion problems by various au-
thors; see [EEHJ96] and [BR03]. Here the aim is to adapt the mesh in
order to compute accurately some functional of the solution but not the
solution itself. See the survey paper [GS02].

Verfürth [Ver05] shows that for SDFEM the error in the computed
solution is equivalent (up to a constant factor that is independent of ε) to
the global value of each of three different estimators (one based on element
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and edge residuals, one based on the solution of local Dirichlet problems,
one based on the solution of local Neumann problems). The true error is
measured in a norm

w �→ ‖w‖1,ε + ‖w‖∗,
where ‖ · ‖ is the dual norm on H−1(Ω) defined by

‖w‖∗ = sup
v∈H1

0 (Ω)\{0}

(w, v)

‖v‖1,ε
,

with (·, ·) the corresponding duality pairing. (This special norm is used to
bound the convective term.) But the paper assumes that the mesh is quasi-
uniform, which excludes the long thin elements that one expects an adaptive
code to construct when solving a convection-diffusion problem.

See also [ANS11,EV11,ZS11] and their references. An excellent sur-
vey of the state of the art in adaptive finite element methods for convection-
diffusion problems is given in [JKN18].

Still, despite much research activity in this area, we do not have today a
satisfactory adaptive method for two-dimensional convection-diffusion prob-
lems that, starting from an ordinary coarse mesh, is guaranteed to produce
a layer-adapted mesh with a bound on the error in the computed solution
in some reasonably strong norm.

Remark 6.66 (Adaptivity for reaction-diffusion problems). For singularly
perturbed reaction-diffusion problems, see [Kop17], which gives a good
overview of the current state of research on this topic.
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Chapter 7

Concluding Remarks

Our survey of numerical methods for steady-state convection-diffusion prob-
lems has not been exhaustive. For example, to learn about hp finite ele-
ment methods, see [EM07,HSS02,Sch98,ZS11] and also [Lin10,Mel02],
where singularly perturbed linear reaction-diffusion problems are examined.
Subgrid modelling is examined in [AEFES09,RST08].

Several numerical methods are compared in [LS01b] where a two-dimen-
sional Shishkin mesh is used to solve a problem on the unit square whose
solution has exponential boundary layers and a corner layer. An interesting
and detailed numerical comparison of several finite element methods for the
challenging Hemker problem of section 4.2.2 is presented in [ACF+11].

The numerical analysis and solution of convection-diffusion problems on
polygonal regions, where the solution is assumed to exhibit boundary but
not interior layers and one has sufficient compatibility of the data at the
corners of the domain, is by now fairly well understood in the framework of
Shishkin meshes combined with finite difference or finite element methods.
When we consider interior layers (and the effects of data incompatibilities
at corners) our grasp is much less, sure and there are several competing
methods. In the long run, our view is that adaptive methods will triumph
over all types of convection-diffusion problems, but much work remains to
be done.

For general surveys of methods for convection-diffusion problems see
[CGL11,FR11,HKOS09,Lin10,Mor96,Roo12,RST08] and the very
readable paper [JKN18].
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