
On discontinuous and continuous approximations to

second-kind Volterra integral equations

Hui Liang

School of Science, Harbin Institute of Technology, Shenzhen

lianghui@hit.edu.cn

Joint work with Prof. Hermann Brunner

July 27-29, 2023 CSRC



Outline

1 Volterra integral equations (VIEs)

What is VIEs?

Fractional differential equations (FDEs) and VIEs

The regularity and numerical methods

2 Discontinuous methods

DG methods for (V2)

DG methods for (V2)α

3 Continuous methods

CC methods for (V2)

CG methods for (V2)

CC methods for (V2)α

4 Numerical examples

Hui Liang (HIT) On discontinuous and continuous approximations to second-kind Volterra integral equationsJuly 27-29, 2023 CSRC 2 / 61



Outline

1 Volterra integral equations (VIEs)

What is VIEs?

Fractional differential equations (FDEs) and VIEs

The regularity and numerical methods

2 Discontinuous methods

DG methods for (V2)

DG methods for (V2)α

3 Continuous methods

CC methods for (V2)

CG methods for (V2)

CC methods for (V2)α

4 Numerical examples

Hui Liang (HIT) On discontinuous and continuous approximations to second-kind Volterra integral equationsJuly 27-29, 2023 CSRC 3 / 61



Volterra integral equations (VIEs)

A linear VIE of the second kind on t ∈ [0,T ] is a functional equation of the form:

(V 2) : u(t) = g(t) +

∫ t

0

K(t, s)u(s) ds,

(V 2)α : u(t) = g(t) +

∫ t

0

(t − s)−α K(t, s)u(s) ds, 0 < α < 1.

Here, g(t) and K (t, s) are given functions, and u(t) is an unknown function. The

function K (t, s) is called the kernel of the VIE.

A linear VIE of the first kind on t ∈ [0,T ] is given by

(V 1) :

∫ t

0

K(t, s)u(s) ds = g(t),

(V 1)α :

∫ t

0

(t − s)−α K(t, s)u(s) ds = g(t), 0 < α < 1.

Here, the unknown function occurs only under the integral sign.
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Applications

Population dynamics, spread of epidemics

Identification of memory kernel in viscoelasticity and heat conduction

Retarded potential equations

. . .

Example: For the time evolution of the temperature u at the surface of a

conducting solid where there is a high thermal loss:

u(t) = π−1/2

∫ t

0

[f (s)− γun(s)]ds, t ≥ 0.

Here, γ – the ratio of the radiative properties to the conductive properties of the

solid material n = 4–Stefan’s radiation law n = 1–Newton’s law of cooling

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential

Equations, Cambridge University Press, Cambridge, 2004a.

H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications,

Cambridge University Press, Cambridge, 2017.
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Fractional differential equations (FDEs) and VIEs

Consider the following Caputo FDE

Dα
∗ u(t) = f (t, u(t)), 0 < α < 1

with initial value u(0) = u0, where

Dα
∗ u(t) =

1

Γ(1− α)

∫ t

0

(t − s)−αu′(s)ds.

The above fractional initial value problem can be transformed into the following

VIE

u(t) = u0 +
1

Γ(α)

∫ t

0

(t − s)α−1u(s)ds.

K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, An

application-oriented exposition using differential operators of Caputo type, Springer-Verlag,

Berlin, 2010.
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The regularity of VIEs
The regularity of (V2)

Recall

(V 2) : u(t) = g(t) +

∫ t

0

K (t, s)u(s) ds.

Theorem (Existence and uniqueness, Brunner, Monograph, 2004)

Let K ∈ C (D) and R denote the resolvent kernel associated with K . Then for any

g ∈ C (I ), (V2) has a unique solution u ∈ C (I ), and this solution is given by

u(t) = g(t) +

∫ t

0

R(t, s)g(s)ds, t ∈ I .

Theorem (Regularity, Brunner, Monograph, 2004)

Assume that K ∈ C m(D). Then R ∈ C m(D). Thus, for any g ∈ C m(I ) the

solution of (V2) satisfies u ∈ C m(I ).
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The regularity of (V2)α

Recall

(V 2)α : u(t) = g(t) +

∫ t

0

(t − s)−α K(t, s)u(s) ds, 0 < α < 1.

Theorem (Existence and Uniqueness, Brunner, Monograph, 2004)

Assume that K ∈ C(D), and let 0 < α < 1. Then for any g ∈ C(I ), (V2)α possesses a

unique solution u ∈ C(I ).

Theorem (Regularity, Brunner, Monograph, 2004)

Assume that g ∈ Cm(I ) and K ∈ Cm(D), with K(t, t) 6= 0 on I . Then:

(i) For any α ∈ (0, 1), the regularity of the unique solution of (V2)α is described by

u ∈ Cm(0,T ] ∩ C(I ), with |u′(t)| ≤ Cαt
−α for t ∈ (0,T ].

(ii) The solution u can be written in the form

u(t) =
∑

(j,k)α

γj,k(α)t
j+k(1−α) + Ym(t;α), t ∈ I .

Here, (j , k)α := {(j , k) : j , k ∈ N0, j + k(1− α) < m} and Ym(·;α) ∈ Cm(I ).
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Numerical methods

Discontinuous approximations in S
(−1)
m−1 (Ih)

—the nature approximate space for VIEs

Discontinuous collocation (DC) methods for (V2), (V2)α and (V1): Brunner,

Monograph, (2004) (V1)α Conjecture

Discontinuous Galerkin (DG) methods for (V2): Zhang, Lin & Rao, Appl.

Math., (2000),

DG methods for (V1): Brunner, Davies & Duncan, IMANA, (2009)

Brunner, Davies & Duncan, IMANA, (2012): Established a relationship

between quadrature DG (QDG) methods and DC methods for (V1).

Question: How about DG methods for (V2)α and (V1)α?
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Continuous approximations in S
(0)
m (Ih)

Continuous collocation (CC) methods for (V1): Kauthen & Brunner, MC,

(1997)

—better convergence order

Question 1: How about CC methods for (V2), (V2)α and (V1)α?

Question 2: How about CG methods for (V2), (V2)α, (V1) and (V1)α?
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DG methods for (V2)
Review: Discontinuous piecewise polynomial collocation (DC) methods

I Meshes: Let

Ih := {tn := nh : n = 0, 1, . . . ,N (tN := T )}

be a given mesh on I = [0,T ], with mesh diameter h := T/N.

I Discontinuous piecewise polynomials space:

S
(−1)
m−1 (Ih) := {v : v |σn ∈ Pm−1 (0 ≤ n ≤ N − 1)} ,

where Pk = Pk (σn) is the linear space of (real) polynomials of degree not

exceeding k at the interval σn := (tn, tn+1].

I Collocation points: For prescribed collocation parameters {ci}, the set of

collocation points is

Xh := {tn + cihn : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)} .
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The collocation equation is

uDC (t) = g(t) +

∫ t

0

K (t, s)uDC (s) ds, t ∈ Xh,

with the local representation of the DC solution

uDC (tn + sh) =
m∑

j=1

Lj (s) (Un
DC )j , with Lj (s) :=

m∏
k=1,k 6=j

s − ck

cj − ck
,

where s ∈ (0, 1] and (Un
DC )j := uDC (tn,j ).

Denote

Gn
DC := (g(tn,1), . . . , g(tn,m))T , Un

DC :=
(
(Un

DC )1 , . . . , (Un
DC )m

)T
,

Bn
DC :=


∫ ci

0
K(tn,i , tn + sh)Lj (s) ds

(i , j = 1, . . . ,m)

 , B
(n,l)
DC :=


∫ 1

0
K(tn,i , tl + sh)Lj (s) ds

(i , j = 1, . . . ,m)

 .

Then the collocation equation can be written as

(Im − hBn
DC )Un

DC = Gn
DC + h

n−1∑
l=0

B
(n,l)
DC Ul

DC .
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Fully discretised discontinuous collocation (FDC) methods

In general, the integrals of Bn
DC ,B

(n,l)
DC cannot be found analytically, but have to

be approximated by suitable numerical quadrature formulas.

On σn, we choose interpolatory m-point quadrature formulas whose abscissas are

based on the m collocation parameters {ci}, and denote bi :=
∫ 1

0
Li (s) ds as the

corresponding weights. Then∫ ci

0

K (tn,i , tn + sh)Lj (s) ds ≈ ci

m∑
k=1

K (tn,i , tn + ci ck h)Lj (ci ck )bk ,

∫ 1

0

K (tn,i , tl + sh)Lj (s) ds ≈
m∑

k=1

K (tn,i , tn + ck h)Lj (ck )bk = K (tn,i , tl,j )bj .

Therefore, (
Im − hB̂n

DC

)
Ûn

DC = Gn
DC + h

n−1∑
l=0

B̂
(n,l)
DC Ûl

DC .
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DG methods

We are looking for the DG solution uDG ∈ S
(−1)
m−1 (Ih), such that for ∀φ ∈ S

(−1)
m−1 (Ih),∫ tn+1

tn

uDG (s)φ(s) ds =

∫ tn+1

tn

g(s)φ(s) ds +

∫ tn+1

tn

(∫ s

0

K(s, v)uDG (v) dv

)
φ(s) ds.

The local representation of the DG solution on the subinterval σn:

uDG (tn + sh) =
m−1∑
j=0

Pj (s) (Un
DG )j , s ∈ (0, 1],

where Pj (s) (j = 0, . . . ,m − 1) denote the ‘shifted’ Legendre polynomials of
degree j on [0, 1], and (Un

DG )j are unknown coefficients to be determined. Denote

Gn
DG :=

(∫ 1

0
g(tn + shn)Pi (s) ds (i = 0, . . . ,m − 1)

)T

,

Un
DG :=

(
(Un

DG )0 , . . . , (Un
DG )m−1

)T
,ADG :=


∫ 1

0
Pj (s)Pi (s) ds

(i , j = 0, . . . ,m − 1)

 ,
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Bn
DG :=


∫ 1

0

(∫ s

0
K(tn + sh, tl + vh)Pj (v) dv

)
Pi (s) ds

(i , j = 0, . . . ,m − 1)

 ,

B
(n,l)
DG :=


∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj (v) dv

)
Pi (s) ds

(i , j = 0, . . . ,m − 1)

 .

Then

(ADG − hBn
DG )Un

DG = Gn
DG + h

n−1∑
l=0

B
(n,l)
DG Ul

DG .

Note that

ADG :=


∫ 1

0
Pi (s)Pj (s) ds

(i , j = 0, . . . ,m − 1)

 =


1

1
3

. . .
1

2m−1


is nonsingular. For sufficiently small h, there determines a unique DG solution.

Remark
If a different set of basis functions is employed, the resulting DG solutions are

equivalent.
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QDG schemes and the relationship with DC schemes

QDG schemes is obtained from DG schemes: approximating the inner product by

suitable numerical quadrature formulas.

On σn, suppose that the quadrature nodes and weights are based on {di}q
i=1 and

{wi}q
i=1, respectively, where q ≥ m, 0 ≤ d1 < · · · < dq ≤ 1, and at least m

weights are nonzero. Employing the basis functions Lj (s), we have

m∑
j=1

q∑
k=1

Lj (dk )Li (dk )wk

(
Ūn

DG

)
j

=

q∑
k=1

g(tn + dk h)Li (dk )wk

+

q∑
k=1

[
h

m∑
j=1

∫ dk

0
K(tn + dk h, tn + vh)Lj (v) dv

(
Ūn

DG

)
j

+

n−1∑
l=0

h
m∑

j=1

∫ 1

0
K(tn + dk h, tl + vh)Lj (v) dv

(
Ū l

DG

)
j

]
Li (dk )wk .
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Now consider the special case with q = m and dk = ck . Then
m∑

j=1

m∑
k=1

Lj (ck )Li (ck )wk

(
Ūn

DG

)
j

=
m∑

k=1

g(tn + ck h)Li (ck )wk

+
m∑

k=1

[
h

m∑
j=1

∫ ck

0

K(tn + ck h, tn + vh)Lj (v) dv
(

Ūn
DG

)
j

+

n−1∑
l=0

h
m∑

j=1

∫ 1

0

K(tn + ck h, tl + vh)Lj (v) dv
(

Ū l
DG

)
j

]
Li (ck )wk .

For wi 6= 0, we obtain

(
Ūn

DG

)
i

=g(tn,i ) + h
m∑

j=1

∫ ci

0

K(tn,i , tn + vh)Lj (v) dv
(

Ūn
DG

)
j

+

n−1∑
l=0

h
m∑

j=1

∫ 1

0

K(tn,i , tl + vh)Lj (v) dv
(

Ū l
DG

)
j
,

which is exactly the DC scheme.

Theorem (Liang, NMTMA, 2022)

Suppose that the inner products are approximated by m-point quadrature with

nonzero weights w1, . . . ,wm and nodes 0 < d1 < . . . < dm ≤ 1. Then the

resulting QDG scheme is identical to the DC scheme with the collocation

parameters {ci}m
i=1 = {di}m

i=1 whatever the choice of weights.
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FDG schemes and the relationship with FDC schemes

FDG schemes is obtained from QDG schemes: approximating the integral by

suitable numerical quadrature formulas.

Similar to FDC, we obtain(
Ûn

DG

)
i

=g(tn,i ) + hci

m∑
j=1

m∑
k=1

K (tn,i , tn + ci ck h)Lj (ci ck )bk

(
Ûn

DG

)
j

+
n−1∑
l=0

h
m∑

j=1

K (tn,i , tl,j )bj

(
Û l

DG

)
i
,

which is exactly the FDC scheme.

Theorem [Liang, NMTMA, 2022]

The resulting FDG scheme is identical to the FDC scheme.
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Error analysis
Recall the error analysis of DC methods

Theorem (DC methods, Brunner, Monograph, 2004)

Assume that g ∈ C m(I ),K ∈ C m(D), and uh ∈ S
(−1)
m−1 (Ih) is the collocation

solution for (V2). Then

‖u − uDC‖∞ := sup
t∈I
|u(t)− uDC (t)| ≤ C‖u(m)‖∞hm.

holds for any set Xh of collocation points with 0 ≤ c1 < · · · < cm ≤ 1.

Theorem (FDC methods, Brunner, Monograph, 2004)

The FDC solution ûDC has the same convergence property as uDC .
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Error analysis for DG methods

Theorem (Zhang, Lin & Rao, 2000; Liang, NMTMA, 2022)

Assume:

(a) g ∈ C m(I ) and K ∈ C m(D).

(b) u and uDG ∈ S
(−1)
m−1 (Ih) are the exact solution and the DG solution.

Then for sufficiently small h,

‖u − uDG‖∞ := sup
t∈I
|u(t)− uDG (t)| ≤ CDG‖u(m)‖∞hm.
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DG methods for (V2)α

Recall

(V 2)α : u(t) = g(t) +

∫ t

0

(t − s)−α K(t, s)u(s) ds, 0 < α < 1,

with regularity

u ∈ Cm(0,T ] ∩ C(I ), with |u′(t)| ≤ Cαt
−α for t ∈ (0,T ].

↪→ Graded mesh: Ih :=
{

tn :=
(

n
N

)r
T : n = 0, 1, . . . ,N

}
with N ≥ 2 and r ≥ 1.

We are looking for the DG solution uh ∈ S
(−1)
m−1 (Ih), such that for ∀φ ∈ S

(−1)
m−1 (Ih),∫ tn+1

tn

uh(s)φ(s) ds =

∫ tn+1

tn

g(s)φ(s) ds +

∫ tn+1

tn

(∫ s

0
(s − v)−αK(s, v)uh(v) dv

)
φ(s) ds.

The local representation of the DG solution:

uh(tn + shn) =
m−1∑
j=0

Pj (s)Un,j , s ∈ (0, 1],

where (Un
DG )j are unknown coefficients to be determined.
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DG methods for (V2)α
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Denote

Gn :=

(∫ 1

0
g(tn + shn)P0(s) ds, . . . ,

∫ 1

0
g(tn + shn)Pm−1(s) ds

)T

,

Un := (Un,0, . . . ,Un,m−1)T ,A :=


∫ 1

0
Pj (s)Pi (s) ds

(i , j = 0, . . . ,m − 1)

 ,

Bn(α) :=


∫ 1

0

(∫ s

0
(s − v)−αK(tn + shn, tn + vhn)Pj (v) dv

)
Pi (s) ds

(i , j = 0, . . . ,m − 1)

 ,

B(n,l)(α) :=


∫ 1

0

(∫ 1

0

(
tn + shn − tl

hl
− v

)−α
K(tn + shn, tl + vhl )Pj (v) dv

)
Pi (s) ds

(i , j = 0, . . . ,m − 1)

 .

Therefore,

(
A− h1−α

n Bn(α)
)
Un = Gn +

n−1∑
l=0

h1−α
l B(n,l)(α)Ul .

For sufficiently small h, there determines a unique DG solution.
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QDG methods for (V2)α

Theorem (Liang, ANM, 2022)

Suppose that the inner products are approximated by m-point quadrature with

nonzero weights w1, . . . ,wm and nodes 0 < d1 < . . . < dm ≤ 1. Then the

resulting QDG scheme is identical to the DC scheme with the collocation

parameters {ci}m
i=1 = {di}m

i=1 whatever the choice of weights.
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Error estimate for (V2)α

Theorem (Liang, ANM, 2022)

Assume:

(a) g ∈ C m(I ) and K ∈ C m(D) with K (t, t) 6= 0.

(b) u and uDG ∈ S
(−1)
m−1 (Ih) are the exact solution and the DG solution.

Then for sufficiently small h,

‖u − uh‖∞ := sup
t∈I
|u(t)− uh(t)| ≤ C hmin{r(1−α),m}.

Remark

The convergence order for the DG method in S
(−1)
m−1 (Ih) is as same as the one for

the DC method in the same polynomial space.
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Continuous methods for (V2)
CC methods

We seek the CC solution uCC in the piecewise polynomial space

S (0)
m (Ih) := {v ∈ C (I ) : v |σ̄n ∈ Pm (0 ≤ n ≤ N − 1)}

of continuous piecewise polynomials of degree m ≥ 0.

At t = tn,i , the collocation equation reads as

uCC (t) = g(t) +

∫ t

0

K (t, s)uCC (s) ds, t ∈ Xh,

with uCC (0) = g(0). The local representation of the CC solution

uCC (tn + sh) =
m∑

j=0

lj (s) (Un
CC )j , s ∈ [0, 1],

where (Un
CC )0 := uCC (tn), (Un

CC )j := uCC (tn,j ) for j = 1, . . . ,m, and

l0(s) :=
m∏

i=1

s − ci

−ci
, lj (s) :=

s

cj

m∏
i=1,i 6=j

s − ci

cj − ci
.
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Error analysis for CC methods

Theorem (CC methods, Liang & Brunner, BIT, 2016)

The CC solution uCC ∈ S
(0)
m (Ih) converges to the exact solution u if, and only if,

the collocation parameters {ci} satisfy the condition

−1 ≤ ρm := (−1)m
m∏

i=1

1− ci

ci
≤ 1.

The corresponding attainable global order of convergence is given by

max
t∈I
|u(t)− uh(t)| ≤ C

{
hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1.

Remark: The condition −1 ≤ ρm ≤ 1 is also the same sufficient and necessary

condition to ensure the convergence of DC methods for (V 1).
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Error analysis for FCC methods

Theorem (FCC methods, Liang, NMTMA, 2022)

The FCC solution ûCC has the same convergence property as the CC solution uCC .
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CG methods for (V2)

We are looking for the CG solution uCG ∈ S
(0)
m (Ih) such that for 0 ≤ n ≤ N − 1

and any η ∈ Pm−1,∫ tn+1

tn

uCG (s)η(s) ds =

∫ tn+1

tn

g(s)η(s) ds +

∫ tn+1

tn

∫ s

0

K(s, v)uCG (v) dvη(s) ds.

Here, because of the continuity of uCG (t), we have uCG (tn−1) = lim
t→t−n−1

uCG (t)

= lim
t→t+

n−1

uCG (t). Hence uCG (t) has only m degrees of freedom on each

subinterval, so η ∈ Pm−1 (see Huang, Xu & Brunner (2016)).

The local representation of the CG solution

uCG (tn + sh) =
m∑

j=0

Pj (s) (Un
CG )j , s ∈ [0, 1],

where the unknown coefficients (Un
CG )j are to be determined.
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Denote

Un
CG :=

(
(Un

CG )0 , . . . , (Un
CG )m

)T
, An

CG :=


∫ 1

0
Pj (s)Pi (s) ds

(i = 0, . . . ,m − 1; j = 0, . . . ,m)

 ,

Bn
CG :=


∫ 1

0

(∫ s

0
K(tn + sh, tn + vh)Pj (v) dv

)
Pi (s) ds

(i = 0, . . . ,m − 1; j = 0, . . . ,m)

 ,

B
(n,l)
CG :=


∫ 1

0

(∫ 1

0
K(tn + sh, tl + vh)Pj (v) dv

)
Pi (s) ds

(i = 0, . . . ,m − 1; j = 0, . . . ,m)

 .

Then by the continuity,(
(P0(0), . . . ,Pm(0))(

An
CG − hBn

CG

) )
Un

CG

=

(
(P0(1), . . . ,Pm(1))

0m×(m+1)

)
Un−1

CG + h

n−1∑
l=0

(
01×(m+1)

B
(n,l)
CG

)
Ul

CG +

(
0

Gn
DG

)
.

Note: Whatever the choice of basis functions, the resulting CG solutions are

equivalent.
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QCG schemes and the relationship with CC schemes

Theorem (Liang, NMTMA, 2022)

Suppose that the inner products are approximated by m + 1-point quadrature with

nonzero weights w0, . . . ,wm and nodes 0 < d0 < . . . < dm ≤ 1. Then the

resulting QCG scheme is identical to the CC scheme with the collocation

parameters {ci}m
i=0 = {di}m

i=0 whatever the choice of weights.
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FCG schemes and the relationship with FCC schemes

Theorem (Liang, NMTMA, 2022)

The resulting FCG scheme is identical to the FCC scheme.
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Error analysis for CG methods

Theorem (CG methods, Liang, NMTMA, 2022)

Assume:

(a) g ∈ C m+2(I ) and K ∈ C m+2(D).

(b) u and uCG ∈ S
(0)
m (Ih) are the exact solution and the CG solution.

Then for sufficiently small h,

‖u − uCG‖∞ := max
t∈I
|u(t)− uCG (t)| ≤ CCG

{
hm+1, if m is odd;

hm, if m is even.

Remark: The convergence of the CG method for (V2) depends on the parity of m,

which is similar to the convergence of the DG method for (V1).
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CC methods for (V2)α

Recall

(V 2)α : u(t) = g(t) +

∫ t

0

(t − s)−α K(t, s)u(s) ds, 0 < α < 1,

with regularity

u ∈ Cm(0,T ] ∩ C(I ), with |u′(t)| ≤ Cαt
−α for t ∈ (0,T ].

↪→ Graded mesh: Ih :=
{

tn :=
(

n
N

)r
T : n = 0, 1, . . . ,N

}
with N ≥ 2 and r ≥ 1.

We seek the CC solution uCC in the piecewise polynomial space S
(0)
m (Ih)

At t = tn,i , the collocation equation reads as

uCC (t) = g(t) +

∫ t

0

(t − s)−αK (t, s)uCC (s) ds, 0 < α < 1,

with uCC (0) = g(0).
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Error analysis

Theorem (CC methods, Liang & Brunner, SINUM, 2019)

The CC solution uCC ∈ S
(0)
m (Ih) converges to the exact solution u if, and only if,

the collocation parameters {ci} satisfy the condition

−1 ≤ ρm := (−1)m
m∏

i=1

1− ci

ci
≤ 1.

The corresponding attainable global order of convergence is given by

max
t∈I
|u(t)− uh(t)| ≤ C

{
hmin{r(1−α),m+1}, if − 1 ≤ ρm < 1,

hmin{r(1−α),m}, if ρm = 1.

Remark: The sufficient and necessary −1 ≤ ρm ≤ 1 does not depend on the weak

singularity of (V2)α.
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Numerical examples

Example

We take K(t, s) ≡ 1, g(t) = 2e−t − 1. It is easy to check that the exact solution

u(t) = e−t .

L: The errors of DG solution for (V2) with m = 1

N max
1≤n≤N

|e(tn)| Order

25 1.5222e-02 -

26 7.7112e-03 0.98

27 3.8809e-03 0.99

28 1.9468e-03 1.00

L: The errors of DG solution for (V2) with m = 2

N max
1≤n≤N

|e(tn)| Order

25 7.9621e-05 -

26 2.0124e-05 1.98

27 5.0585e-06 1.99

28 1.2681e-06 2.00
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L: The errors of DG solution for (V2) with m = 3

N max
1≤n≤N

|e(tn)| Order

25 2.4926e-07 -

26 3.1472e-08 2.99

27 3.9537e-09 2.99

28 4.9546e-10 3.00

L: The errors of CG solution for (V2) with m = 1

N max
1≤n≤N

|e(tn)| Order

25 1.5939e-04 -

26 4.0268e-05 1.98

27 1.0120e-05 1.99

28 2.5365e-06 2.00
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L: The errors of CG solution for (V2) with m = 2

N max
1≤n≤N

|e(tn)| Order

25 9.1726e-06 -

26 2.2932e-06 2.00

27 9.1726e-06 2.00

28 5.7329e-07 2.00

L: The errors of CG solution for (V2) with m = 3

N max
1≤n≤N

|e(tn)| Order

25 1.1152e-09 -

26 7.0327e-11 3.99

27 4.4150e-12 3.99

28 2.7645e-13 4.00
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Example

We take K (t, s) = et−s , g(t) = 3e−t−et

2 . It is easy to check that it has the same

exact solution as the above example.

L: The errors of FDC solution for (V2) with m = 1.

c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

N (L0(1) = −9) (L0(1) = − 51
49 ) (L0(1) = −1) (L0(1) = − 1

4 ) (L0(1) = 0)

29 4.2859e-03 9.9420e-04 9.7466e-04 2.5996e-03 4.5758e-03

210 2.1473e-03 4.9757e-04 4.8780e-04 1.2996e-03 2.2867e-03

211 1.0748e-03 2.4890e-04 2.4402e-04 6.4978e-04 1.1431e-03

212 5.3766e-04 1.2448e-04 1.2204e-04 3.2488e-04 5.7146e-04

Order 1.00 1.00 1.00 1.00 1.00
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L: The errors of FDC solution for (V2) with m = 2.

Gauss Radau IIA ( 1
4 , 1) ( 1

4 ,
5
6 ) ( 1

6 ,
1
2 )

N (L0(1) = 1) (L0(1) = 0) (L0(1) = 0) (L0(1) = 3
5 ) (L0(1) = 5)

25 7.9291e-05 3.9654e-06 1.8582e-04 5.9454e-05 4.5007e-04

26 2.0082e-05 4.9586e-07 4.7038e-05 1.5059e-05 1.1325e-04

27 5.0533e-06 6.1992e-08 1.1832e-05 3.7896e-06 2.8401e-05

28 1.2674e-06 7.7495e-09 2.9670e-06 9.5053e-07 7.1109e-06

Order 2.00 3.00 2.00 2.00 2.00

L: The errors of FDC solution for (V2) with m = 3.

Gauss Radau IIA ( 1
3 ,

1
2 , 1) ( 1

3 ,
1
2 ,

8
9 ) ( 1

9 ,
1
3 ,

1
2 )

N (L0(1) = −1) (L0(1) = 0) (L0(1) = 0) (L0(1) = 1
4 ) (L0(1) = 16)

22 1.0804e-04 2.4056e-06 1.2600e-03 8.2916e-04 2.2833e-03

23 1.4823e-05 7.6075e-08 1.6374e-04 1.0643e-04 3.0343e-04

24 1.9414e-06 2.3845e-09 2.0828e-05 1.3442e-05 3.8873e-05

25 2.4843e-07 7.4574e-11 2.6248e-06 1.6876e-06 4.9128e-06

26 3.1419e-08 2.3323e-12 3.2939e-07 2.1138e-07 6.1730e-07

Order 2.98 5.00 2.99 3.00 2.99
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L: The errors of FCC solution for (V2) with m = 1.

c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

N (L0(1) = −9) (L0(1) = − 51
49 ) (L0(1) = −1) (L0(1) = − 1

4 ) (L0(1) = 0)

28 8.0094e+237 3.2351e-02 7.7556e-06 3.2485e-06 1.1904e-05

29 NaN 2.2706e+02 1.9458e-06 8.1121e-07 2.9760e-06

210 NaN 4.4652e+10 4.8730e-07 2.0269e-07 7.4399e-07

211 NaN 6.9019e+27 1.2193e-07 5.0657e-08 1.8600e-07

212 NaN 6.5934e+62 3.0496e-08 1.2662e-08 4.6499e-08

Order - - 2.00 2.00 2.00

L: The errors of FCC solution for (V2) with m = 2.

Gauss Radau IIA ( 1
4 , 1) ( 1

4 ,
5
6 ) ( 1

6 ,
1
2 )

N (L0(1) = 1) (L0(1) = 0) (L0(1) = 0) (L0(1) = 3
5 ) (L0(1) = 5)

24 5.6609e-05 2.0711e-05 3.1315e-05 8.5480e-06 4.2966e+05

25 1.4178e-05 2.6177e-06 3.9421e-06 1.2517e-06 8.5170e+15

26 3.5461e-06 3.2896e-07 4.9441e-07 1.7256e-07 2.5256e+37

27 8.8663e-07 4.1227e-08 6.1901e-08 2.2894e-08 1.7273e+81

28 2.2166e-07 5.1600e-09 7.7438e-09 2.9630e-09 6.3743e+169

Order 2.00 3.00 3.00 2.95 -
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L: The errors of FCC solution for (V2) with m = 3.

Gauss Radau IIA ( 1
3 ,

1
2 , 1) ( 1

3 ,
1
2 ,

8
9 ) ( 1

9 ,
1
3 ,

1
2 )

N (L0(1) = −1) (L0(1) = 0) (L0(1) = 0) (L0(1) = 1
4 ) (L0(1) = 16)

22 6.9677e-06 1.0860e-06 4.6205e-05 9.8469e-06 8.4353e-02

23 4.7048e-07 3.5947e-08 3.0413e-06 6.2312e-07 4.8013e+02

24 3.0572e-08 1.1518e-09 1.9442e-07 3.9030e-08 1.4464e+11

25 1.9484e-09 3.6413e-11 1.2278e-08 2.4392e-09 1.7531e+29

26 1.2297e-10 1.1453e-12 7.7124e-10 1.5240e-10 3.8167e+66

Order 3.99 4.99 3.99 4.00 -
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Example

Let K (t, s) = 1
10Γ(1−α) and g(t) = 1 such that the exact solution

u(t) = E1−α( t1−α

10 ).

L: The errors of DG solution for (V2)α with m = 1 and α = 0.1

N uniform mesh Order graded mesh Order

22 1.3406e-02 - 1.4297e-02 -

23 7.0274e-03 0.93 7.2205e-03 0.99

24 3.7215e-03 0.92 3.6279e-03 0.99

25 1.9817e-03 0.91 1.8184e-03 1.00

26 1.0583e-03 0.90 9.1028e-04 1.00

27 5.6612e-04 0.90 4.5541e-04 1.00

28 3.0308e-04 0.90 2.2777e-04 1.00
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L: The errors of DG solution for (V2)α with m = 1 and α = 0.3

N uniform mesh Order graded mesh Order

22 1.3558e-02 - 1.5343e-02 -

23 8.1082e-03 0.74 7.8273e-03 0.97

24 4.9031e-03 0.73 3.9511e-03 0.99

25 2.9853e-03 0.72 1.9848e-03 0.99

26 1.8253e-03 0.71 9.9468e-04 1.00

27 1.1190e-03 0.71 4.9791e-04 1.00

28 6.8705e-04 0.70 2.4910e-04 1.00

L: The errors of DG solution for (V2)α with m = 1 and α = 0.5

N uniform mesh Order graded mesh Order

22 1.2342e-02 - 1.5751e-02 -

23 8.4399e-03 0.55 8.1742e-03 0.95

24 5.8289e-03 0.53 4.1586e-03 0.97

25 4.0537e-03 0.52 2.0968e-03 0.99

26 2.8330e-03 0.52 1.0528e-03 0.99

27 1.9867e-03 0.51 5.2747e-04 1.00

28 1.3966e-03 0.51 2.6401e-04 1.00
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L: The errors of DG solution for (V2)α with m = 1 and α = 0.7

N uniform mesh Order graded mesh Order

22 9.1812e-03 - 1.4894e-02 -

23 7.2310e-03 0.34 8.0287e-03 0.89

24 5.7292e-03 0.34 4.1542e-03 0.95

25 4.5612e-03 0.33 2.1115e-03 0.98

26 3.6453e-03 0.32 1.0643e-03 0.99

27 2.9224e-03 0.32 5.3430e-04 0.99

28 2.3487e-03 0.32 2.6769e-04 1.00

L: The errors of DG solution for (V2)α with m = 1 and α = 0.9

N uniform mesh Order graded mesh Order

22 3.6123e-03 - 9.9107e-03 -

23 3.3226e-03 0.12 6.4984e-03 0.61

24 3.0593e-03 0.12 3.6663e-03 0.83

25 2.8196e-03 0.12 1.9381e-03 0.92

26 2.6010e-03 0.12 9.9525e-04 0.96

27 2.4013e-03 0.12 5.0417e-04 0.98

28 2.2185e-03 0.11 2.5373e-04 1.00
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L: The errors of DG solution for (V2)α with m = 2 and α = 0.1

N uniform mesh Order graded mesh Order

22 7.8890e-05 - 1.6509e-04 -

23 5.6909e-05 0.47 4.8336e-05 1.77

24 3.4548e-05 0.72 1.3259e-05 1.87

25 1.9654e-05 0.81 3.4839e-06 1.93

26 1.0857e-05 0.86 8.9709e-07 1.96

27 5.9105e-06 0.88 2.2830e-07 1.97

28 3.1939e-06 0.89 5.7705e-08 1.98

L: The errors of DG solution for (V2)α with m = 2 and α = 0.3

N uniform mesh Order graded mesh Order

22 3.5720e-04 - 7.4088e-04 -

23 2.3223e-04 0.62 2.0797e-04 1.83

24 1.4734e-04 0.66 5.5664e-05 1.90

25 9.2299e-05 0.67 1.4461e-05 1.94

26 5.7407e-05 0.69 3.6995e-06 1.97

27 3.5559e-05 0.69 9.3788e-07 1.98

28 2.1972e-05 0.69 2.3650e-07 1.99
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L: The errors of DG solution for (V2)α with m = 2 and α = 0.5

N uniform mesh Order graded mesh Order

22 5.8581e-04 - 1.8545e-03 -

23 4.1787e-04 0.49 5.2140e-04 1.83

24 2.9700e-04 0.49 1.3754e-04 1.92

25 2.1067e-04 0.50 3.5400e-05 1.96

26 1.4926e-04 0.50 8.9930e-06 1.98

27 1.0568e-04 0.50 2.2686e-06 1.99

28 7.4792e-05 0.50 5.7004e-07 1.99

L: The errors of DG solution for (V2)α with m = 3 and α = 0.1

N uniform mesh Order graded mesh Order

10 4.2362e-06 - 2.7848e-06 -

20 2.3002e-06 0.88 3.6816e-07 2.92

30 1.6047e-06 0.89 1.1139e-07 2.95

40 1.2419e-06 0.89 4.7514e-08 2.96

50 1.0176e-06 0.89 2.4498e-08 2.97

60 8.6451e-07 0.89 1.4246e-08 2.97
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L: Uniform mesh: CC errors at the mesh points when m = 2 and α = 0.5.

Gauss Radau IIA ( 1
4 , 1) ( 1

4 ,
5
6 ) ( 1

6 ,
1
2 )

N (ρm = 1) (ρm = 0) (ρm = 0) (ρm = 3
5 ) (ρm = 5)

25 5.1326e-03 3.8744e-06 1.0609e-05 1.9691e-03 7.8034e+19

26 3.6490e-03 1.9313e-06 5.2714e-06 1.4007e-03 1.1272e+42

27 2.5901e-03 9.6354e-07 2.6241e-06 9.9457e-04 3.5959e+86

28 1.8372e-03 4.8102e-07 1.3079e-06 7.0535e-04 5.7691e+175

Order 0.50 1.00 1.00 0.50 -

L: Uniform mesh: CC errors at the mesh points when m = 3 and α = 0.5.

Gauss Radau IIA ( 1
3 ,

1
2 , 1) ( 1

3 ,
1
2 ,

8
9 ) ( 1

9 ,
1
3 ,

1
2 )

N (ρm = −1) (ρm = 0) (ρm = 0) (ρm = 1
4 ) (ρm = 16)

24 5.1183e-03 1.0233e-06 9.6554e-06 4.0142e-04 7.2495e+16

25 3.6465e-03 5.0112e-07 4.7615e-06 2.8548e-04 8.6683e+35

26 2.5922e-03 2.4690e-07 2.3577e-06 2.0270e-04 1.8474e+74

27 1.8398e-03 1.2217e-07 1.1708e-06 1.4375e-04 1.2755e+151

Order 0.49 1.00 1.00 0.50 -
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L: Graded mesh: CC errors at the mesh points when m = 1, α = 0.5 and r = 4.

c1 = 0.1 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

N (ρm = −9) (ρm = − 51
49 ) (ρm = −1) (ρm = − 1

4 ) (ρm = 0)

28 3.2058e+237 9.3908e-04 9.2274e-07 5.4671e-07 6.8104e-08

29 - 4.7625e+00 2.3063e-07 1.3711e-07 1.7156e-08

210 - 5.9177e+08 5.7653e-08 3.4342e-08 4.3122e-09

211 - 4.7825e+25 1.4413e-08 8.5947e-09 1.0820e-09

Order - - 2.00 2.00 1.99

L: Graded mesh: CC errors at the mesh points when m = 2, α = 0.5 and r = 6.

Gauss Radau IIA ( 1
4 , 1) ( 1

4 ,
5
6 ) ( 1

6 ,
1
2 )

N (ρm = 1) (ρm = 0) (ρm = 0) (ρm = 3
5 ) (ρm = 5)

22 8.6626e-03 6.1892e-05 1.0288e-04 3.9837e-03 5.1577e-01

23 2.7930e-03 9.6685e-06 1.4758e-05 7.6029e-04 3.9099e+01

24 7.6970e-04 1.2945e-06 1.9123e-06 1.0729e-04 1.8153e+06

25 1.9476e-04 1.4389e-07 2.4403e-07 1.4011e-05 3.2306e+16

Order 1.98 3.17 2.97 2.94 -
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Conclusions and future work

Conclusions:

Discontinuous methods

Convergence analysis of DG methods for (V2)

Convergence analysis of DG methods for (V2)α

Discontinuous methods

Convergence analysis of CC methods for (V2)

Convergence analysis of CG methods for (V2)

Convergence analysis of CC methods for (V2)α

Future work: Convergence analysis of CG methods for (V2)α
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