Publication since 2015:
  1. Y. Peng, L. Lai, Y. Tai, K. Zhang, X. L. Xu*, and X. Cheng*, "Diffusion of Ellipsoids in Bacterial Suspensions", Phys. Rev. Lett. 116, 068303 (2016).  Selected as Editors' Suggestion.
  2. O. Yang, Y. Peng, Z. Liu, C. Tang, X. L. Xu, and X. Cheng, "Dynamics of ellipsoidal tracers in swimming algal suspensions", Phys. Rev. E 94 , 042601 (2016).
  3. Y. He, S. A. Rice*, and X. L. Xu*, "Analytic solution of the Ornstein-Zernike relation for inhomogeneous liquids",J. Chem. Phys. 145, 234508 (2016).
  4. S. Guo, D. Samanta, Y. Peng, X. L. Xu*, and X. Cheng*, "Symmetric shear banding and swarming vortices in bacterial 'superfluids'", Proc. Natl. Acad. Sci. USA 115, 7212 (2018).
  5. X. Wang, B. Li, X. L. Xu*, and Y. Han*, "Surface roughening, premelting and melting of monolayer and bilayer crystals", Soft Matter 17, 688 (2021).
  6. X. Shen, C. Fang, Z. Jin, H. Tong, S. Tang, H. Shen, N. Xu, J. Lo*, X. L. Xu*, and L. Xu*, "Achieving adjustable elasticity with non-affine to affine transition", Nature Materials 20, 1635 (2021).
  7. B. Zhang, P. Leishangthem, Y. Ding*, and X. L. Xu*, "An effective and efficient model of the near field hydrodynamic interactions for active suspensions of bacteria", Proc. Natl. Acad. Sci. USA 118, e2100145118 (2021).
  8. Z. Zheng, X. L. Xu, Y. Wang*, and Y. Han*, "Hydrodynamic couplings of colloidal ellipsoids diffusing in channels", J. Fluid Mech. 933, A40 (2022).
  9. S. Kamdar, S. Shin, P. Leishangthem, L. F. Francis*, X. L. Xu*, and X. Cheng*, "The colloidal nature of complex fluids leads to enhanced motility of flagellated bacteria", Nature 603, 819 (2022).
  10. M. Chen, X. Shen, Z. Chen, J. Lo, Y. Liu, X. L. Xu, Y. Wu, and L. Xu*, "Realizing the multifunctional metamaterial for fluid flow in a porous medium", Proc. Natl. Acad. Sci. USA 119, e2207630119 (2022).
More publications in progress, madly pushing...

Publication before 2015:

Hydrodynamic interactions of colloidal suspensions under confinement

  1. X. L. Xu, and S. A. Rice, "Influence of hydrodynamic coupling on the density dependence of quasi-one-dimensional diffusion", J. Chem. Phys. 122, 024907 (2005).
  2. X. L. Xu, S. A. Rice, B. Lin, and H. Diamant, "Influence of Hydrodynamic Coupling on Pair Diffusion in a Quasi-One-Dimensional Colloid System", Phys. Rev. Lett. 95, 158301 (2005).
  3. X. L. Xu, B. Lin, B. Cui, A. R. Dinner and S. A. Rice, "Spreading of colloidal clusters in a Quasi-One-Dimensional Channel", J. Chem. Phys. 132, 084902 (2010).
  4. B. Lin, B. Cui, X. L. Xu, R. Zangi, H. Diamant, and S. A. Rice, "Divergence of the Long Wavelength Collective Diffusion Coefficient in Quasi-one and Quasi-two Dimensional Colloid Suspensions", Phys. Rev. E 89, 022303 (2014).

Thermodynamic phase transitions of colloidal suspensions

  1. X. L. Xu, and S. A. Rice, "density functional theory of one- and two-layer freezing in a confined colloid system", Proc. R. Soc. A 464, 65 (2008).
  2. X. L. Xu, and S. A. Rice, "The Liquid to Hexatic Phase Transition in a Quasi-Two-Dimensional Colloid System", Phys. Rev. E 78, 011602 (2008).
  3. X. L. Xu, and S. A. Rice, "Maximally Random Jamming of Two-Dimensional One-Component and Binary Hard Disc Fluids", Phys. Rev. E 83, 021120 (2011).

Flow-induced structures and properties

  1. X. Cheng*, X. L. Xu*, I. Cohen, S. A. Rice and A. R. Dinner, "Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow", Proc. Natl. Acad. Sci. USA 109, 63 (2012).
  2. J. Pesic, J. Z. Terdik, X. L. Xu, Y. Tian, A. Lopez, S. A. Rice, A. R. Dinner and N. F. Scherer, "Structural responses of quasi-two-dimensional colloidal fluids to excitations elicited by nonequilibrium perturbations", Phys. Rev. E 86, 031403 (2012).
  3. X. L. Xu, S. A. Rice, and A. R. Dinner, "The relation between ordering and shear thinning in colloidal suspensions", Proc. Natl. Acad. Sci. USA 110, 3771 (2013).
  4. X. L. Xu, S. A. Rice, and A. R. Dinner, "Influence of inter-layer exchanges on vorticity-aligned colloidal string assembly in a simple shear flow", J. Phys. Chem. Lett. 4, 3310 (2013).

Modeling mechanical properties of DNA

  1. X. L. Xu, H. Ge, C. Gu, Y. Gao, S. Wang, B. J. R. Thio, J. T. Hynes, X. S. Xie, and J. Cao, "Modeling Spatial Correlation of DNA Deformation: DNA Allostery in Protein Binding", J. Phys. Chem. B 117, 13378 (2013).
  2. X. L. Xu, B. J. R. Thio, and J. Cao, "Correlated local bending of DNA double helix and its effect on DNA flexibility in the sub persistence length regime", J. Phys. Chem. Lett. 5, 2868 (2014).